The Periodic Table of the Chemical Elements

九 **Ç**ñ ₽¥ (C)

G+

THE ABOUT

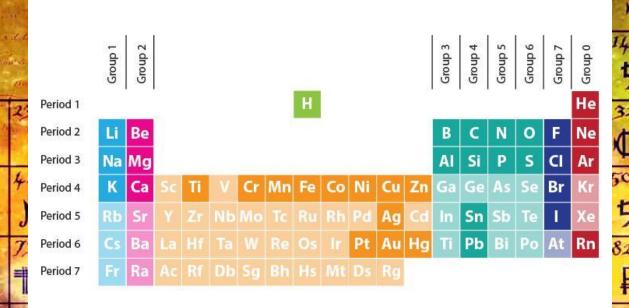
TIME

- Content heavy chapter
- 3 **key** concepts

CHAPTER ANALYSIS

EXAM

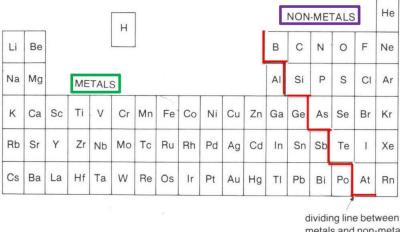
- Usually tested along with 'Atomic Structure' & 'Chemical Bonding'
- Highly tested on specifically 'alkali metals', 'halogens' & 'noble gases'.


- Medium overall weightage
- Constitute to 4% of marks for past 5 year papers

KEY CONCEPT

PERIODIC TABLE & TRANSITION METALS ALKALI METALS HALOGENS NOBLE GASES

REDICTABLE

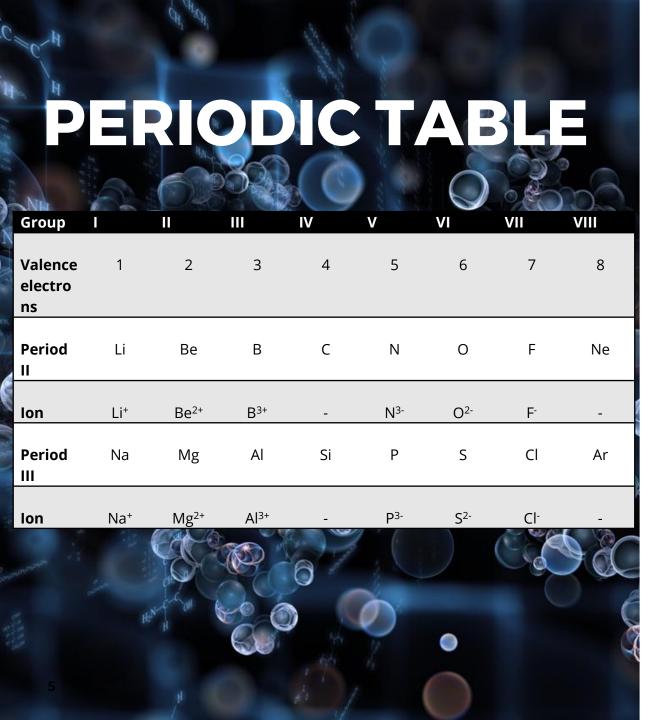

Horizontal rows are known as periods. (Represent number of electron shells.)

Vertical rows are known as groups. (Represent number of valence electrons.)

The block of elements between Group II and Group III are called transition metals and they tend to have variable oxidation states.

One way of organizing the periodic table....

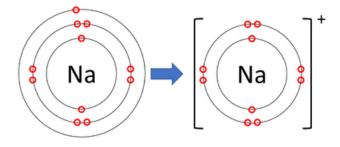
- The zigzag line or the staircase separates
- · Metals vs Nonmetals


metals and non-metal

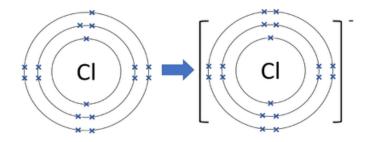
Trend across a period (left to right)

- Number of protons increases
- Atomic radius decreases
- Metallic properties decreases

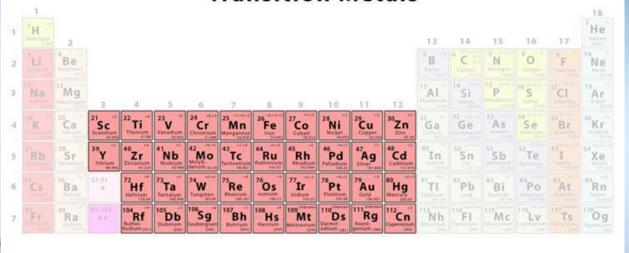
Trends down a group (top to bottom)


- Number of protons increases
- Number of electron shells increases
- Atomic radius increases
- Metallic properties remain constant

ION FORMATION


Metallic elements will form cations as they lose their valence electrons to form positively charged ions.

For example, Group I elements like Sodium (Na) will form Na⁺ with charge +1.


Non-metallic elements will **form anions** as they gain electrons to form negatively charged ions.

For example, Group VII elements like chlorine (CI) will form CI with charge of –1.

TRANSITION METALS

Transition Metals

Transition metals are found in between the Group II and Group III elements in the periodic table.

100 mQ

PHYSICAL PROPERTIES OF TRANSITION METALS

Transition metals has high melting points and high densities due to the strong metallic bonds.

They are good electrical and thermal conductors.

Transition metals also form **coloured compounds.**

CHEMICAL PROPERTIES OF TRANSITION METALS

Transition metals has the ability to exhibit **multiple oxidation states.**

Hence, they are frequently used as catalysts.

For example, **iron** is used in the Haber process to produce ammonia, and **nickel** is used in making margarine through the process of adding hydrogen to vegetable oil (hydrogenation).

ALKALIMETALS

	Name of element	Melting points / °C	Density / gcm- ³
6: 50 le 10:			
	Lithium (Li)	180	0.534
	Sodium (Na)	98	0.971
	Potassium (K)	63	0.862
	Rubidium (Rb)	39	1.532
	Caesium (Cs)	28	1.873
	Francium (Fr)	27	-
		(decreases down the	(increases down the
		group)	group)

GROUP I: ALKALI METALS

Group I elements are called alkali metals as they react with water to give alkaline solutions.

	No. of Concession, Name of Street, or other Designation, Name of Street, Name			1000		
Metal	Chloride	Nitrate	Carbon	Sulfate	Oxide	Hydroxid
			ate			е
Lithium	LiCl	LiNO ₃	Li ₂ CO ₃	Li ₂ SO ₄	Li ₂ O	LiOH
Sodium	NaCl	NaNO ₃	Na ₂ CO ₃	Na ₂ SO ₄	Na ₂ O	NaOH
Potassium	KCl	KNO ₃	K_2CO_3	K_2SO_4	K_2O	КОН

PHYSICAL PROPERTIES OF ALKALI METALS

- Low melting points
- Low densities, lithium, sodium and potassium can float on water
- Good conductor of electricity & heat

Densities of alkali metals generally increase down the group while melting points decrease down the group.

This is due to the increase in atomic radius down the group.

Chemical properties of alkali metals

As they have only one valence electron in their outermost shell, they form ionic compounds, with their resulting ions of +1 charge.

Reactivity of alkali metals increases down the group due to the extra electron shells and the nucleus is further away, which increases the **ease of losing the valence electron**.

HALOGENS

1	Name of element	State	Colour
	Fluorine (F ₂)	Gas	Pale Yellow
7	Chlorine (Cl ₂)	Gas	Green Yellow
	Bromine (Br ₂)	Liquid	Reddish brown
	lodine (l ₂)	Solid	Black
	Astatine (At ₂)	Solid	Black
		(increases down	(increasing colour intensity)
		the group)	

GROUP VII: THE HALOGENS

Halogens usually exist as diatomic molecules.

PHYSICAL PROPERTIES OF HALOGENS

- Low melting and boiling points that has an increasing trend down the group
- Densities of the halogens increase down the group
- Dissolve sparingly in water (chlorine, bromine and iodine) generally, but soluble in organic solvents.
- Does not conduct electricity due to a lack of mobile charge carriers

CHEMICAL PROPERTIES OF HALOGENS

Reactivity decreases down the group. The ease of gaining a valence electron decreases as the valence shell is further away from the nucleus, making it more difficult to attract an electron.

DISPLACEMENT REACTION

A more reactive halogen is able to displace a less reactive halogen from an aqueous solution of its ions.

$$Cl_2$$
 (aq) + 2KBr (aq) \rightarrow 2KCl (aq) + Br₂ (aq)

The solution will turn reddish brown due to the aqueous bromine produced.

NOBLE GAS

Name of element	Melting points / °C	Boiling points / °C	State
Helium (He)	-	-269	Gas
Neon (Ne)	-248	-246	Gas
Argon (Ar)	-189	-186	Gas
Krypton (Kr)	-157	-153	Gas
Xenon (Xe)	-111	-108	Gas
Radon (Rn)	-71	-62	Gas
5	(increases down the	(increases down the	
	group)	group)	

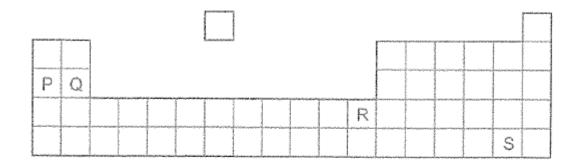
GROUP 0: THE NOBLE GASES

All noble gases have a **fully filled valence shell**.

Noble gases are **unreactive** and **inert** since they have a **stable electronic configuration**.

They exist as mono-atomic particles (single atoms).

PHYSICAL PROPERTIES OF NOBLE GASES


- Do not conduct electricity (lack of charge carriers)
- Very low melting and boiling points
- Increasing melting and boiling points going down the group
- Increasing densities of noble gases going down the group

USE OF NOBLE GASES

Element	Application	Reason
Helium (He)	Fill airships & hot air balloons	Low density comparative to air
Neon (Ne)	Fill interior of neon light tubes	Unreactive gas
Argon (Ar)	Fill light bulbs	Unreactive gas

Try it yourself! (TYS Question)

19. The diagram shows part of the Periodic Table.

Which two elements would react together most vigorously?

(N2020/P1/Q23)

A P and R

В

P and S

C Q and S

D R and S

()

Answer:

19. **B**

Elements P, Q and R will react with S to form an ionic compound. However, P is the most reactive element and gives the most vigorous reaction.

Try it yourself! (TYS Question)

20. In the equation shown, X and Y represent elements in Group VII of the Periodic Table.

$$X_2 + 2KY \rightarrow Y_2 + 2KX$$

Which pair of elements could be X and Y?

(N2020/P1/Q24)

	X	Y
1	chlorine	iodine
2	bromine	chlorine
3	bromine	iodine
4	iodine	fluorine

1 and 3

1 and 4

2 and 3

2 and 4

Answer:

20. A

In Group VII, a more reactive element is higher in position in the group. X must be more reactive than Y since a reaction happens between X, and KY.

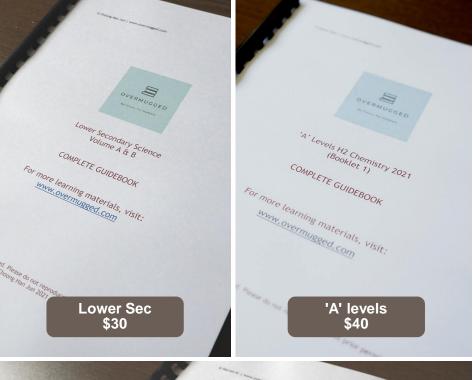
About Us

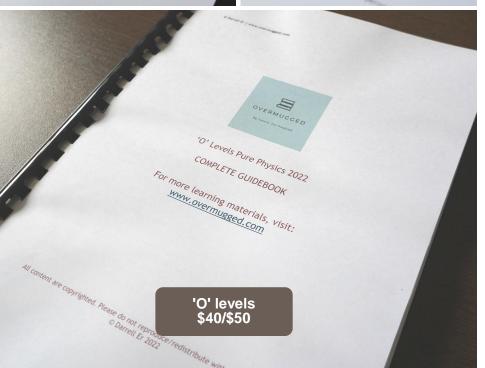
OVERMUGGED is a learning platform created by tutors, for students.

Our team of specialist tutors offer 1-to-1 private tuition, group tuitions and crash courses.

Follow us on <u>IG</u> and join our <u>Telegram channel</u> to get the latest updates on our free online revision sessions, webinars and giveaways!

If you would want to join Darrell's group tuition, contact him at:


Whatsapp: <u>8777 0921</u>


Telegram: @DarrellEr

Website: https://www.overmugged.com/darrell

Notes prepared by: Darrell Er **'O' Levels Chemistry & Physics**

For more free notes & learning materials, visit: www.overmugged.com

Found the free notes useful? We got something better!

OVERMUGGED's curated notes is a **highly condensed booklet** that **covers all content within the MOE syllabus**.

This booklet consist of **key concept breakdowns**, **worked examples** and **exam tips/ techniques** to required to ace your exams.

Get an **upgraded version** of the free notes and supercharge your revision!

Purchase here.

Crash courses

Check out our upcoming crash courses at: https://www.overmugged.com/crashcourses

'O' levels subject available:

- Pure Chemistry
- Pure Physics
- Pure Biology
- Combined Science
- E-Math
- -A-Math
- -English
- History
- Geography
- Combined Humanities
- Principles of Accounts (POA)