TOPIC 3: MOLE CONCEPT \& CHEMICAL EQUATIONS

TIME

CHAPTER ANALYSIS

- Need to practice a lot
- 5 key concepts
- Heavily tested
- Tested as add-on to other chapters \rightarrow Acid \& Bases, Electrolysis etc..
- Heavy overall weightage
- Constitute to $\mathbf{8 \%}$ of marks for past 5 year papers

CHEMICAL EQUATION CHEMICAL FORMULA BALANCING CHEMICAL EQUATION IONIC EQUATION

IONIC COMPOUNDS

Some common anions:

Carbonate $\mathrm{CO}_{3}{ }^{2-}$

Nitrate NO_{3}
Phosphate $\mathrm{PO}_{4}{ }^{3}$
Sulfate $\mathrm{SO}_{4}{ }^{2}$
Chloride $\mathrm{Cl}{ }^{-}$

Forming of ionic compounds:

For example,
Cation: Ca^{2+}
Anion: NO_{3}
To balance out charges,
$1 \times \mathrm{Ca}^{2+} \& 2 \times \mathrm{NO}_{3}$
Compound
$\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$

CHEMICAL FORMULA

Chlorine molecule

Methane compound

Water compound

COVALENT COMPOUNDS

Prefixes are generally used to name compounds.

Prefix:

Mono-1
Di-2
Tri - 3
Tetra - 4
Pent - 5

For example,
Nitrogen monoxide - NO
Nitrogen dioxide - NO_{2}

STATE SYMBOLS

Solid (s)
Liquid (I)
Gaseous (g)
Aqueous (aq) - exist as ions in a solution, water was added.

BALANCING EQUATIONS

Check that the number of atoms for each element is equal on both sides of the equation (reactants \& products).

To balance the chemical equation, you will need to add a coefficient in front of the compounds that are not balanced.

For example,
$\mathrm{MgCl}_{2}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq}) \rightarrow \mathrm{MgCO}_{3}(\mathrm{~s})+\underline{\mathbf{2}} \mathrm{NaCl}(\mathrm{aq})$
$\mathrm{MgCO}_{3}(\mathrm{~s})+\underline{\mathbf{2}} \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{MgCl}_{2}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

$$
\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+\underline{\mathbf{3}} \mathrm{CO}(\mathrm{~g}) \rightarrow \underline{\mathbf{2}} \mathrm{Fe}(\mathrm{~s})+\underline{\mathbf{3}} \mathrm{CO}_{2}(\mathrm{~g})
$$

[^0]
IONIC EQUATION

An ionic equation is a chemical equation which only shows ions of the aqueous compounds that took part in the chemical reaction.

Only ionic compounds that are in aqueous state should be written as ions.

Step 1

Write the balanced chemical equation for the reaction.

$$
\mathrm{CaCl}_{2}(\mathrm{aq})+\mathrm{CuSO}_{4}(\mathrm{aq}) \rightarrow \mathrm{CaSO}_{4}(\mathrm{~s})+\mathrm{CuCl}_{2}(\mathrm{aq})
$$

Step 2

Ionic compounds that are in aqueous state should be written as ions.

$$
\mathrm{Ca}^{2+}(\mathrm{aq})+2 \mathrm{Cl}^{-}(\mathrm{aq})+\mathrm{Cu}^{2+}(\mathrm{aq})+\mathrm{SO}_{4}^{2-}(\mathrm{aq}) \rightarrow \mathrm{CaSO}_{4}(\mathrm{~s})+\mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{Cl}^{-}(\mathrm{aq})
$$

Step 3

Remove all the spectator ions.
$\mathrm{Ca}^{2+}(\mathrm{aq})+2 \mathrm{Cl}-(\mathrm{aq})+\mathrm{Cu}^{2+}(\mathrm{aq})+\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq}) \rightarrow \mathrm{CaSO}_{4}(\mathrm{~s})+\mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{Cl}-(\mathrm{aq})$

Step 4

Obtain the final ionic equation.

$$
\mathrm{Ca}^{2+}(\mathrm{aq})+\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq}) \rightarrow \mathrm{CaSO}_{4}(\mathrm{~s})
$$

MOLE CONCEPT

 Ar, Mr MOLE

Relative atomic mass $\left(A_{r}\right)$

A_{r} of an element is defined as the average mass of its atom compared to 1/12 of the mass of one carbon-12 atom.

Relative molecular mass (M_{r})

M_{r} is defined as the average mass of a molecule of a substance compared to $1 / 12$ of the mass of one carbon-12 atom.
*Carbon-12 is used as a basis of comparison because it is the most commonly available element on Earth.

Percentage by mass of an element present in a compound:

$$
\frac{\text { Ar } \times \text { (no. of atoms) }}{\text { Mr of compound }} \times 100 \%
$$

WHAT IS MOLE?

One mole of any substance would contain 6.02×10^{23} particles.
The value 6.02×10^{23} is referred to as the Avogadro's constant.

No. of particles $=$ mole $\times 6.02 \times 10^{23}$

MOLAR VOLUME OF GASES

At room temperature and conditions, one mole of gas has a volume of $\mathbf{2 4} \mathbf{d m}^{\mathbf{3}}$ or 24000 cm 3

Any type of gas, regardless of their chemical formula \& M_{r}, all have the same volume.

1 mole of gas = $24 \mathrm{dm}^{3}$

Concen ration

-

Mole / mass
 Concentration $=$
 volume

CONCENTRATION

Concentration of a solution refers to the amount of solute in a solution.
There are two ways to measure concentration:

1) The mass (in grams) of solute in $1 \mathrm{dm}^{3}$ of a solution (gdm^{-3}).
2) The number of moles of solute in $1 \mathrm{dm}^{3}$ of solution (moldm ${ }^{-3}$).

Example:
Calculate the mass of solute in $600 \mathrm{~cm}^{3}$ of 0.4 moldm $^{-3} \operatorname{copper}($ II) sulfate solution.

Volume of solution $=600 \mathrm{~cm}^{3}=0.60 \mathrm{dm}^{3}$

Number of moles of CuSO_{4}

$=$ Concentration $\left(\right.$ moldm $\left.^{-3}\right) \times$ Volume of solution $\left(\mathrm{dm}^{3}\right)$
$=0.4 \times 0.60$
$=0.24 \mathrm{~mol}$

Mass of CuSO_{4}

$=$ Number of moles $(\mathrm{mol}) \times$ Molar mass $\left(\mathrm{gmol}^{-1}\right)$
$=0.24 \times[64+32+4(16)]$
$=38.4 \mathrm{~g}$

STOICHIOMETRY LIMITING REAGENT

GHIMCAL CALOULATIONS

STOICHIOMETRY FOR GAS

Since one mole of all gases share the same volume ($1 \mathrm{~mol}=24 \mathrm{dm}^{3}$), assuming temperature and pressure are constant, volume of a gas is directly proportional to the number of moles.

Hence, the mole ratio of gases in a chemical equation can also let us know the ratio of the volumes of gases in the chemical reaction.

$$
\mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})
$$

$10 \mathrm{~cm}^{3}$ of N_{2} will react with $20 \mathrm{~cm}^{3}$ of O_{2} to produce $\mathbf{2 0 \mathrm { cm } ^ { 3 }}$ of NO_{2}.

CHEMICAL CALCULATIONS

Example:
Find the mass of hydrogen gas formed when 80 g of calcium metal is reacted with excess hydrochloric acid.

Step 1: Write out the balanced equation.

$$
\mathrm{Ca}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{CaCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})
$$

Step 2: Calculate the number of moles of $\mathbf{M g}$ reacted.
Number of moles of Ca reacted $=$ mass $/ \mathrm{Mr}$
= $80 / 40$
$=2$
Step 3: Determine the molar ratio.
Number of moles of Ca reacted : Number of moles of H_{2} produced

1	$:$	1
2	$:$	2

Step 4: Calculate the mass of H_{2} produced.
Mass of H_{2} produced $=$ Mole $\times \mathrm{Mr}$

$$
\begin{aligned}
& =2 \times 2 \\
& =4.0 \mathrm{~g}
\end{aligned}
$$

LIMITING AND EXCESS REACTANTS

Not all the reactants are always fully used up in a chemical reaction.
The reaction will stop when one reactant is fully used up, even if the other reactants are still available.

The limiting reactant is the reactant that is completely used up first. It limits the amount of product that can be formed.

The excess reactant is the reactant that would still remain in excess even when the limiting reactant has been completely reacted.

$$
1 \text { car body }+4 \text { wheels } \rightarrow 1 \text { full car }
$$

How many full cars can I assemble if I have 10 car bodies \& 12 car wheels?

Answer: 3 full cars

Hence, the wheels are the limiting reagent as it 'limits' further reaction to assemble more cars even though there is an 'excess' of car bodies.

Example:

$$
\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+2 \mathrm{KCl}(\mathrm{aq}) \rightarrow \mathrm{CuCl}_{2}(\mathrm{~s})+2 \mathrm{KNO}_{3}(\mathrm{aq})
$$

Hypothetically, let's say there is 1 mole of $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$ \& 5 moles of KCl .

As there is only 1 mole of $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$, so even if there are 5 moles of KCl , only 2 moles of KCl will react.
$\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$ is the limiting reactant while KCl is the excess reactant.

PERCENTAGE YIELD
\square
Actual yield
Percentage yield $=$ Theoretical yield

Actual yield refers to the actual amount of product obtained.
Theoretical yield refers to the maximum amount of products formed based on chemical calculation.
\square

Mass of pure substance Mass of sample

MPIRICAL EORMULA

EMPIRICAL FORMULA

The empirical formula is the simplest ratio of the constituent elements of a compound.

If values of M_{r} is given, the molecular formula can be determined.
\rightarrow Just multiply by appropriate ratio to increase empirical formula to match the M_{r}.

16

Example (by mass):

Calcium metal of mass 1.6 g was burnt in oxygen to form calcium oxide. When the calcium was completely burnt, the oxide produced had a mass of 2.24 g.

Determine the empirical formula \& molecular formula of this oxide.

 (Mr is 102)Mass of calcium $=1.60 \mathrm{~g}$
Mass of calcium oxide produced $=2.24 \mathrm{~g}$
Mass of oxygen reacted $=2.24-1.60=0.64 \mathrm{~g}$

	Calcium (Ca)	Oxygen (O)
Mass in sample/g	1.6	0.64
Molar mass/g mol		
	40	16
Number of moles	$1.6 / 40=0.04$	$0.64 / 16=0.04$
Simplest ratio	1	1

Hence, the empirical formula of the oxide is CaO.

Since M_{r} of oxide is 102 ,
$n(40+16)=102$
Hence, molecular formula is $\mathbf{C a}_{\mathbf{2}} \mathbf{O}_{\mathbf{2}}$.

IG handle:
@overmugged

Join our telegram channel:
@overmugged

Need help?

DARRELL

(Private tutor with 7
(Private tutor with 7
years of experience)
87770921
(Whatsapp)
@Darreller
(telegram username)
Need help?

Register now on our website and secure your slots!

'O' levels crash course program

Professionally designed crash course to help you get a condensed revision before your ' O ' Levels!
The $\mathbf{4}$ hour session focuses on going through key concepts and identifying commonly tested questions!

Our specialist tutors will also impart valuable exam pointers and tips to help you maximise your preparation and ace your upcoming national exam!

The crash courses will begin in June 2021 and last till Oct 2021.

[^0]: Practice makes perfect!

