Name:	Level/Subject:4049 Sec 4 A-Math
Material: May Practice Questions 2022	Centre: Overmugged

Instructions

- Answer all questions
- If working is needed for any question it must be shown with the answer
- Omission of essential working will result in loss of marks
- You are expected to use a scientific calculator to evaluate explicit numerical expressions
- If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures
- Give answers in degrees to one decimal place
- For π, use either your calculator value of 3.142 , unless the question requires the answer in terms of π
- A copy of the formula list is provided for you on the next page

Copyright

All materials prepared in this Practice Questions set are prepared by the original tutor (Kaiwen). All rights reserved. No part of any materials provided may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without prior written permission of the tutor

Question Source

All questions are sourced and selected based on the known abilities of students sitting for the 'O' Level A-Math Examination. All questions compiled here are from 2009-2021 School Mid-Year / Prelim Papers. Questions are categorised into the various topics and range in varying difficulties. If questions are sourced from respective sources, credit will be given when appropriate.

How to read:
[S4 ABCSS P1/2011 PRELIM Qn 1]
Secondary 4, ABC Secondary School, Paper 1, 2011, Prelim, Question 1

Contents

1 Questions 4
1.1 Quadratic Equations \& Inequalities 4
1.2 (Indices) and Surds 5
1.3 Polynomials 6
1.4 Partial Fractions 7
1.5 Binomial Theorem 8
1.6 Exponential \& Logarithms 9
1.7 Trigonometry 11
1.8 Coordinate Geometry 14
1.9 Further Coordinate Geometry 16
1.10 Linear Law 17
1.11 Proofs of Plane Geometry 18
1.12 Differentiation 20
1.13 Integration 22
1.14 Differentiation \& Integration 24
1.15 Kinematics 25
2 Final Answers 26
2.1 Quadratic Equations \& Inequalities 26
2.2 (Indices) \& Surds 26
2.3 Polynomials 26
2.4 Partial Fractions 27
2.5 Binomial Theorem 27
2.6 Exponential \& Logarithms 28
2.7 Trigonometry 29
2.8 Coordinate Geometry 30
2.9 Further Coordinate Geometry 30
2.10 Linear Law 31
2.11 Proofs in Plane Geometry 31
2.12 Differentiation 31
2.13 Integration 32
2.14 Differentiation \& Integration 32
2.15 Kinematics 33

List of Mathematical Formulae

1. ALGEBRA

Quadratic Equation
For the equation $a x^{2}+b x+c=0$

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Binomial Expansion

$$
(a+b)^{n}=a^{n}+\binom{n}{1} a^{n-1} b+\binom{n}{2} a^{n-2} b^{2}+\ldots+\binom{n}{r} a^{n-r} b^{r}+\ldots+b^{n}
$$

where n is a positive integer and

$$
\binom{n}{r}=\frac{n!}{r!(n-r)!}=\frac{n(n-1) \ldots(n-r+1)}{r!}
$$

2. TRIGONOMETRY

Identities

$$
\begin{gathered}
\sin ^{2} A+\cos ^{2} A=1 \\
\sec ^{2} A=1+\tan ^{2} A \\
\operatorname{cosec}^{2} A=1+\cot ^{2} A \\
\sin (A \pm B)=\sin A \cos B \pm \cos A \sin B \\
\cos (A \pm B)=\cos A \cos B \mp \sin A \sin B \\
\tan (A \pm B)=\frac{\tan A \pm \tan B}{1 \mp \tan A \tan B} \\
\sin 2 A=2 \sin A \cos A \\
\cos 2 A=\cos ^{2} A-\sin ^{2} A=2 \cos ^{2} A-1=1-2 \sin ^{2} A \\
\tan 2 A=\frac{2 \tan A}{1-\tan ^{2} A}
\end{gathered}
$$

Formulae for $\triangle A B C$

$$
\begin{gathered}
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
a^{2}=b^{2}+c^{2}-2 b c \cos A \\
\Delta=\frac{1}{2} b c \sin A
\end{gathered}
$$

1 Questions

1.1 Quadratic Equations \& Inequalities

1. (a) Given that $p>\frac{1}{3}$, explain why the equation has no real solutions

$$
3^{2 x+1}=6\left(3^{x-1}\right)-p
$$

(b) Find the exact range of values of the constant a for which the line intersects the curve at 2 distinct points

$$
\begin{gathered}
y=2 x-\frac{a^{2}}{2} \\
y=x^{2}-a x-4
\end{gathered}
$$

Credit: S4 CGSS P2/2021 PRELIM Qn 2
2. (a) Find the range of values of p such that the following lies entirely above the x-axis

$$
y=p x^{2}-4 x+p
$$

(b) Explain clearly why the line will intersect the curve at 2 distinct points for all real values of k

Explat

$$
\begin{gathered}
y=x+2 k \\
2 y^{2}-x^{2}=8
\end{gathered}
$$

Credit: S4 CHIJ Sec P1/2020 PRELIM Qn 8

3. (a) Express $x^{2}-x+1$ in the form $(x-p)^{2}+q$, where p and q are constants
(b) Show that the curve will cut the x-axis at two distinct points for all real values of p

$$
y=x^{2}-2 p x+p-1
$$

Credit: S4 CCHS(M) P2/2020 PRELIM Qn 4

4. (a) Find the range of values of x for which

$$
-\frac{4}{3 x^{2}+14 x-5}<0
$$

(b) Find the range of values of c for which the line intersects the curve at 2 distinct points

$$
\begin{gathered}
x+y=c \\
y^{2}=2 x+3
\end{gathered}
$$

Credit: S4 HYSS P1/2020 PRELIM Qn 3

1.2 (Indices) and Surds

1. (a) Find the value of 15^{n} given that

$$
3^{n+2}-3^{n}=\frac{5^{n+1}}{25^{n}}
$$

(b) Without using a calculator, find the roots of the equation in the form $\frac{a+b \sqrt{c}}{4}$

$$
x \sqrt{80}=\sqrt{20}-x \sqrt{48}
$$

Credit: S4 BPGHS P1/2020 EOY Qn 7

2. A prism with volume $(50 \sqrt{5}-101) \mathrm{cm}^{3}$ has a cross-sectional area of the sector with radius $(4-\sqrt{5})$ cm , angle of 2 radians and a height of $h \mathrm{~cm}$

Without using a calculator, express h in the form $(a+b \sqrt{5}) \mathrm{cm}$, where a and b are integers
Credit: S4 HSS P1/2020 PRELIM Qn 3
3. A cone with base radius $(5+2 \sqrt{3}) \mathrm{cm}$ and a slant height $l \mathrm{~cm}$ has a curved surface area of $(51-3 \sqrt{3}) \pi \mathrm{cm}^{2}$. Without using a calculator, obtain an expression for l in the form $(a+b \sqrt{3})$, where a and b are integers

Credit: S4 JWSS P1/2020 PRELIM Qn 1
4. Without using a calculator, find a and b given that, a and b are rational numbers

$$
\frac{\sqrt{7}-\sqrt{6}}{\sqrt{21}+\sqrt{2}}=a \sqrt{3}+b \sqrt{14}
$$

Credit: S4 NGHS P2/2020 PRELIM Qn 1

1.3 Polynomials

1. The equation of a polynomial is

$$
f(x)=9 x^{3}-6 x^{2}-11 x+4
$$

(a) Factorise completely the polynomial $f(x)$
(b) Sketch the graph of $f(x)=9 x^{3}-6 x^{2}-11 x+4$
(c) Find the range of values of x for which $f(x) \geq 0$

Credit: S4 CHIJ SNGS P1/2021 PRELIM Qn 6
2. The roots of a cubic equation $F(x)=0$ are $-1,2$ and 5 . When $F(x)$ is divided by $(x-3)$, the remainder is 30
(a) Find the remainder when $F(x)$ is divided by $(x+3)$
(b) Solve the equation

$$
F(\sqrt{m})=0
$$

Credit: S4 ZHSS P1/2021 PRELIM Qn 5

3. The quartic (4th degree) polynomial $f(x)$ is such that the coefficient of x^{4} is 3 . Two of the roots of $f(x)=0$ are -2 and 3 . One of the factors of $f(x)$ is $x^{2}-3 x-1$
(a) How many real solutions does $f(x)=0$ have? Justify your answer
(b) Write an expression for $f(x)$ in descending powers of x
(c) Find the remainder when $f(x)$ is divided by $(2 x+1)$

Credit: S4 HYSS P2/2020 PRELIM Qn 6
4. (a) Solve the equation

$$
2 x^{3}-3 x^{2}-3 x+4=0
$$

(b) It is given that $(x-5)$ is a factor of $p(x)+1$, where $p(x)$ is a polynomial. Find the remainder when $g(x)=2 x^{3}-p(x)+5$ is divided by $(x-5)$

Credit: S4 NHHS P1/2020 PRELIM Qn 7

5. The function, where p and q are constants, is exactly divisible by $\left(x^{2}-4\right)$

$$
P(x)=2 x^{4}+p\left(x^{3}+x^{2}\right)+q(3 x-5)
$$

(a) Find the value of p and of q
(b) Find the remainder when $P(x)$ is divided by $(2 x+1)$
(c) Determine, showing all necessary working, the number of real roots of the equation

$$
P(x)=0
$$

Credit: S4 NGHS P2/2020 PRELIM Qn 5

1.4 Partial Fractions

1. (a) Express the following in partial fractions

$$
\frac{4 x^{3}+5 x^{2}+x-1}{x^{2}(x+1)}
$$

(b) Hence, find

$$
\int \frac{4 x^{3}+5 x^{2}+x-1}{x^{2}(x+1)} d x
$$

Credit: S4 ZHSS P2/2021 PRELIM Qn 2

2. (a) Express the following in partial fractions

$$
\frac{5 x^{2}+4 x-3}{x^{2}(2 x-1)}
$$

(b) Hence, show that

$$
\int_{1}^{5} \frac{5 x^{2}+4 x-3}{x^{2}(2 x-1)} d x=\frac{12}{5}+\ln 75
$$

Credit: S4 ACS(B) P2/2020 PRELIM Qn 7

3. (a) Show that $(x-3)$ is a factor of $2 x^{3}-13 x^{2}+24 x-9$
(b) Express the following as the sum of three partial fractions

$$
\frac{5 x^{2}-30 x+10}{2 x^{3}-13 x^{2}+24 x-9}
$$

(c) Hence, find

$$
\int \frac{10 x^{2}-60 x+20}{2 x^{3}-13 x^{2}+24 x-9} d x
$$

Credit: S4 CHIJ Sec P2/2020 PRELIM Qn 3

4. (a) Factorise

$$
x^{3}+8
$$

(b) A pyramid has

$$
\text { Base area: }\left(x^{3}+8\right) \mathrm{cm}^{2} \quad \text { Volume: }\left(x^{3}+\frac{1}{3} x^{2}+\frac{14}{3} x+4\right) \mathrm{cm}^{3}
$$

(i) Show that the height of the pyramid can be expressed as the following, where A, B and C are
constants

$$
A+\frac{x^{2}+B x+C}{x^{3}+8}
$$

(ii) Using your results in part (a) and part (b)(i), express the height of the pyramid as partial fractions

1.5 Binomial Theorem

1. (a) Write down and simplify, in descending powers of x, the first three terms in the expansion of the following, where $n>0$

$$
\left(x^{5}+\frac{2}{x^{6}}\right)^{n}
$$

(b) When the third term of the expansion is divided by the second term, $\frac{8}{x^{11}}$ is obtained. Show that $n=9$
(c) Using the value of n found in part (ii), and without expanding the expression in part (i), show that there is no constant term in the expansion

Credit: S4 ANDSS P1/2021 PRELIM Qn 4

2. Consider the expansion, where a is a positive constant

$$
\left(\frac{a^{2}}{\sqrt{x}}-\frac{\sqrt{x}}{a}\right)^{8}
$$

Find, in terms of \boldsymbol{a},
(a) the term independent of x
(b) the coefficient of x^{2} in the expansion of

$$
\left(\frac{3 x^{4}-4 x^{2}}{x^{2}}\right)\left(\frac{a^{2}}{\sqrt{x}}-\frac{\sqrt{x}}{a}\right)^{8}
$$

Credit: S4 CGSS P1/2021 PRELIM Qn 4

3. (a) Write down, and simplify, the first 4 terms in the expansion of $(1+x)^{7}$ in ascending x
(b) Write down the general term in the binomial expansion of

$$
\left(x^{2}-\frac{2}{x^{3}}\right)^{9}
$$

(c) Write down the power of x in this general term
(d) Hence, or otherwise, determine the coefficient of x^{3} in the expansion of

$$
(1+x)^{7}+\left(x^{2}-\frac{2}{x^{3}}\right)^{9}
$$

Credit: S4 CCHS(M) P2/2020 PRELIM Qn 5

4. (a) Given that the coefficient of x^{3} in the following expansion is $\frac{595}{4}$

$$
(3-p x)^{5}+(2+x)^{6}
$$

find the value of p
(b) Calculate the coefficient of x^{3} in the expansion of

$$
\left(x^{2}-2 x\right)^{2}(2+x)^{6}
$$

Credit: S4 NGHS P1/2020 PRELIM Qn 6

1.6 Exponential \& Logarithms

1. The population of polar bears in the arctic is given by the formula, where t is in years

$$
N=8000\left(2+3 e^{-\frac{t}{50}}\right)
$$

Find
(a) the initial population
(b) the population after 50 years
(c) the least number of years it would take the population to exceed 20000
(d) the rate at which the polar bears is decreasing when $t=10$
(e) Explain why the population of the polar bear can never fall below 16000
(f) Sketch the population-time curve in the grid below

Credit: S4 CHS P1/2021 PRELIM Qn 2
2. (a) (i) Sketch the graph of $y=\log _{2}(3 x+1)$ and label the point where $x=\frac{1}{3}$
(ii) Explain why $x>-\frac{1}{3}$
(b) Solve

$$
\log _{2}(3 x+1)+\frac{1}{2} \log _{\sqrt{2}}(3 x-1)=1
$$

Credit: S4 MGS P2/2021 PRELIM Qn 1

3. (a) Given that

$$
\log _{2} p=x \quad \log _{2} q=y
$$

express the following in terms of x and y
(i)

$$
\log _{2} 1-p+q
$$

(ii)

$$
\log _{2} \sqrt{\frac{p^{5}}{q^{3}}}
$$

(iii)

$$
\log _{\sqrt{2}} 4 p
$$

(b) Solve

$$
4 \log _{4} x+1=3 \log _{8}(5-3 x)
$$

Credit: S4 BVSS P1/2020 PRELIM Qn 3
4. (a) Solve the equation

$$
2 \log _{5} x+\log _{25} 16=\log _{5}(9 x-2)
$$

(b) Given that

$$
\frac{1}{\log _{a} b}-\frac{1}{\log _{b} a}=\sqrt{293} \quad a>b>1
$$

find the value of

$$
\frac{1}{\log _{a b} a}-\frac{1}{\log _{a b} b}
$$

Credit: S4 JSS P2/2020 PRELIM Qn 4

5. (a) The magnitude of an Earthquake is measured by the Richter scale. The magnitude, M, can be determined by the equation, where I is the intensity of seismic waves recorded by seismographs and I_{0} is a constant which represents the threshold intensity

$$
M=\lg \left(\frac{I}{I_{0}}\right)
$$

(i) State the magnitude of an Earthquake such that its intensity is the same as the threshold intensity
(ii) Earthquakes of magnitude 5.8 and 6.3 occured in Taiwan and Canada respectively in 2019. Find the value of the following as a power of 10 ,

$$
\frac{I_{C}}{I_{T}}
$$

given that I_{C} and I_{T} represent the intensity of the Earthquakes in Canada and Taiwan respectively
(b) Solve the simultaneous equations

$$
\begin{gathered}
2^{p-9} \div 8^{q}=\sqrt[4]{32^{p}} \\
\log _{2} 6-\log _{4}(11 q-2 p)=1
\end{gathered}
$$

1.7 Trigonometry

1. Given that

$$
\sin A=-\frac{4}{5} \quad \tan B=-\frac{5}{12} \quad \cos A>0
$$

A and B are in different quadrants. Evaluate the following, without the use of a calculator, the values of
(a)

$$
\cot A
$$

(b)

$$
\cos (A+B)
$$

(c)

$$
\sin \left(\frac{B}{2}\right)
$$

Credit: S4 MGS P1/2021 PRELIM Qn 5

2. The diagram shows a pentagon $T U V W X$ with three fixed points, T, U and V such that $T U=16 \mathrm{~cm}$, $U V=6 \mathrm{~cm}$ and $\angle T U V=90^{\circ}$

The lines $T X$ and $V W$ are perpendicular to the line $U X$. The angle θ can vary in such a way that the point W lies between the points U and X
(a) Show that the perimeter, $P \mathrm{~cm}$, of pentagon $T U V W X$ is given by

$$
P=22+10 \cos \theta+22 \sin \theta
$$

(b) Express P in the form $22+R \sin (\theta+\alpha)$, where $R>0$ and $0^{\circ}<\alpha<90^{\circ}$
(c) Explain why it is possible for the pentagon to have a perimeter of 45 cm
(d) Find the values of the value of θ for which $P=45$

Credit: S4 SCGS P1/2021 PRELIM Qn 7
3. (a) Show that

$$
\cos (A+B) \cos (A-B)=\cos ^{2} A+\cos ^{2} B-1
$$

(b) Hence, determine the value of $\cos 15^{\circ} \cos 75^{\circ}$ without the use of calculator

Credit: S4 SMSS P2/2021 PRELIM Qn 7
4. (a) (i) Prove the identity

$$
\sin x \cos x+\cot x \cos ^{2} x=\cot x
$$

(ii) Hence, solve, for $0 \leq x \leq \pi$

$$
\sin 3 x \cos 3 x+\cot 3 x \cos ^{2} 3 x=1
$$

(b) (i) On the same axes, sketch the graphs of the following, for $0 \leq x \leq 2 \pi$

$$
y=3 \sin x-1 \quad y=\tan \frac{x}{2}
$$

(ii) Hence, state the number of solutions, for $0 \leq x \leq 2 \pi$

$$
3 \sin x-1=\tan \frac{x}{2}
$$

Credit: S4 AHS P2/2020 PRELIM Qn 9

5. A mass attached to a spring is pulled vertically downwards to position C from its equilibrium position B and then released. The mass will bob up to position A. Assuming that the mass never loses any energy or momentum, it will oscillate up and down between A and C

Given that C is the initial position of the mass, the distance between the mass and the motion sensor, $h \mathrm{~cm}$, over time, t seconds, can be modelled by the equation, where k is a constant

$$
h=-3 \cos (k \pi t)+7
$$

The time taken for the mass to travel from C to A is 0.25 seconds
(a) Explain why this model suggests that the distance between A and C is 6 cm
(b) Show that the value of k is 4 radians per second
(c) Solve, for $0 \leq t \leq 0.5$

$$
-3 \cos (4 \pi t)+7=8
$$

(d) Using your answer in part (c), find the duration when the mass is within 2 cm of A, when it travels from C to A

Credit: S4 ACS(B) P1/2020 PRELIM Qn 8

6. The diagram shows the frontal view of a rectangular block $P Q R S$, with size 14 cm by 8 cm .

The block is placed on an adjustable ramp $V S$ such that it is tilted at an acute angle θ and $\angle V T S=90^{\circ}$.
The ramp is placed on a horizontal surface $S T$ and the perpendicular distance from Q to $S T$ is $d \mathrm{~cm}$
(a) Show that

$$
d=8 \cos \theta+14 \sin \theta
$$

(b) Express d in the form $R \sin (\theta+\alpha)$, where $R>0$ and α is acute
(c) The perpendicular distance from Q to $S T$ is $\sqrt{200} \mathrm{~cm}$. Find the smallest angle θ
(d) State the maximum value of d

1.8 Coordinate Geometry

1. Solutions to this question by accurate drawing will NOT be accepted

The figure shows a right-angled triangle $A B C$, where points A, B and C are $(k, 0),(2,8)$ and $(-2,-4)$ respectively. $B C$ cuts the y-axis at $N . M$ is a point on $A C$
(a) Given that $k>0$, find the value of k
(b) Find the coordinates of N and show that N is the midpoint of $B C$
(c) Given that the area of quadrilateral $A B N M$ is 25 units 2, find the coordinates of M

Credit: S4 AHS P2/2021 PRELIM Qn 6

2. The diagram shows a kite $A B C D$ in which the line $A C$ passes through the origin and has a gradient of 1.5

(a) Find the value of k
(b) Find the equation of the line $B D$
(c) The line $A C$ and line $B D$ meets the point M. Show that, M is $\left(-\frac{8}{13},-\frac{12}{13}\right)$
(d) The coordinates of D are (a, b). Prove that

$$
13\left(a+\frac{8}{13}\right)^{2}+13\left(b+\frac{12}{13}\right)^{2}=49
$$

Credit: S4 CCHS(M) P2/2021 PRELIM Qn 7
3. Solutions to this question by accurate drawing will not be accepted

The diagram shows a trapezium $A B C D$ in which $A B$ is parallel to $D C$. The coordinates of the points A, B and D are $(2,0),(3 a, 2 a+4)$ and $(-2,2)$ respectively, where a is a positive integer. The length of $A B$ is $4 \sqrt{5}$ units
(a) Show that $a=2$
(b) Find the coordinates of C
(c) Find the equation of the perpendicular bisector of $A B$
(d) Hence, or otherwise, determine if C lies on the perpendicular bisector of $A B$
(e) Find the area of the trapezium $A B C D$

Credit: S4 CHIJ SNGS P1/2020 PRELIM Qn 10
4. Solutions by accurate drawing will not be accepted

The points $A(-0.5,2), B(1,3.5), C$ and D are the four vertices of a parallelogram. The point E lies on $B C$ such that $3 B E=B C$. The line $C D$ has the equation $y=x-\frac{1}{2}$. Lines are drawn, parallel to the y-axis, from A to meet the x-axis at N and from E to meet $C D$ at F
(a) Calculate the coordinates of C and E
(b) Find the coordinates of F
(c) Explain why $A E F N$ is a parallelogram

1.9 Further Coordinate Geometry

1. A circle, C_{1}, has an equation

$$
x^{2}-6 x+y^{2}+10 y=66
$$

(a) Are the x-axis and y-axis tangents to C_{1} ? Explain your answer
(b) Does the point $(2,-4)$ lie inside, on or outside of C_{1} ? Show your working clearly
(c) A second circle, C_{2}, is the reflection of C_{1}, on the y-axis. Find the equation of C_{2}

Credit: S4 CCHS(M) P1/2021 PRELIM Qn 6

2. The equation of a circle, centre C, is given as the following, where p and k are constants

$$
x^{2}+y^{2}+p x+\left(\frac{p}{2}+4\right) y+k=0
$$

It is given that C lies on the line

$$
3 x-2 y-8=0
$$

(a) Show that $p=-4$
(b) Find the coordinates of C
(c) Find the value of k, given that $x=-8$ is a tangent to the circle
(d) The coordinates of point A is $(14,-8)$. Show that A lies outside of the circle
(e) Point X lies on the circle such that it is furthest from A. State the geometrical relationship between points A, C and X

Credit: S4 TKSS P2/2021 PRELIM Qn 7
3. A circle, C_{1}, and another circle, C_{2}, pass through the same point $(0,-3)$
(a) Given that the radius of both circles is $\sqrt{5}$ units and their centres lie on the line $y=x$, find the equation of C_{1} and C_{2}
(b) Circle C_{1} and C_{2} intersect at a point on the x-axis. Find the x-coordinate of the point of intersection of C_{1} and C_{2} on the x-axis
(c) Given that a point P lies on circle, C_{1} and another point Q lies on circle, C_{2}, find the greatest distance between P and Q

Credit: S4 BPGHS P2/2020 PRELIM Qn 10
4. Three points are given by $P(-2,3), Q(6,7)$ and $R(4,11)$
(a) Show that $\angle P Q R$ is 90°
(b) Explain why P, Q and R lie on a circle with diameter $P R$
(c) Find the equation of the circle
(d) Determine whether the point $(3,2)$ is inside or outside the circle. Justify
(e) Given that the line $3 y-4 x=k$ is a normal to the circle, find the value of k

Credit: S4 HSS P2/2020 PRELIM Qn 6

1.10 Linear Law

1. A bacteria sample was cultured in a laboratory. The number of bacteria in the sample, y, is related to the time elasped, t minutes, by the following equation, where k and m are constants

$$
y=k(2)^{\frac{t}{m}}
$$

The table below shows measured values of y and t

t	10	20	30	40	50
y	2600	4300	7000	11400	19200

(a) Plot $\lg y$ against t and draw a straight line graph
(b) Use your graph to estimate
(i) the value of k and of m
(ii) the time taken for the number of bacteria to reach 15000

Credit: S4 SMSS P1/2021 PRELIM Qn 10
2. (a) The variables x and y are related in such a way that when $\frac{x}{y}$ is plotted against $\frac{1}{x}$, a straight line is obtained. The line passes through $(2,9)$ and $(5,3)$. Find an expression for y in terms of x
(b) The table shows experimental values of two variables, x and y

x	2	4	6	8
y	8.48	5.99	4.90	4.24

It is known that x and y are related by the equation $x^{n} y=k$, where n and k are constants. Draw a suitable straight line graph to represent the above data and use it to estimate the values of n and k

Credit: S4 AHS P1/2020 PRELIM Qn 11

3. The population, P, of a small town decreases with time, t years. It is known that P and t are related by the equation, where P_{0} and k are constants

$$
P=P_{0} e^{-k t}
$$

The table below shows measured values of P and t

t	6	9	12	15	18
P	274	203	151	112	83

(a) Plot $\ln P$ against t and draw a straight line graph
(b) Estimate the values of P_{0} and k, giving your answers correct to the nearest hundred and to 1 decimal place respectively
(c) Find the number of years it will take for the population of the small town to drop below 100. Give your answer correct to the nearest year

Credit: S4 HIHS P2/2020 PRELIM Qn 6

1.11 Proofs of Plane Geometry

1. The diagram shows a circle, centre O, with points A, B, C and D lie on the circle

$H A$ is a tangent to the circle. D and G are mid-points of $H B$ and $A B$ respectively. $A D$ is the angle bisector of $\angle C A H$
(a) Prove that $O G$ is perpendicular to $A B$
(b) Prove that $\angle A B D=\angle C B D$

Credit: S4 SCGS P2/2021 PRELIM Qn 13
2. The diagram shows a circle passing through points A, B, C and D

The tangents from E meets the circle at B and D. Given that $A D=B F$ and $\triangle A B D$ is isosceles, where $A B=B D$. Prove that
(a) $A B F D$ is a parallelogram
(b) $\triangle B C E$ is similar to $\triangle D F E$
(c) $B D \times E F=C D \times D E$

Credit: S4 AHS P1/2018 PRELIM Qn 6
3. In the diagram, two circles intersect at B and F

$B C$ is the diameter of the larger circle and is the tangent to the smaller circle at B. Point A lies on the smaller circle such that $A F E C$ is a straight line. Point D lies on the larger circle such that $B H E D$ is a straight line. Prove that
(a) $C D$ is parallel to $A H$
(b) $A B$ is a diameter of the smaller circle
(c) $\triangle A B C$ and $\triangle B F C$ are similar
(d) $A C^{2}-A B^{2}=C F \times A C$

Credit: S4 CGSS P1/2018 PRELIM Qn 12

4. In the figure, $X Y Z$ is a straight line that is tangent to the circle at X

$X Q$ bisects $\angle R X Z$ and cuts the circle at $S . R S$ produced meets $X Z$ at Y and $Z R=X R$. Prove that
(a) $S R=S X$
(b) a circle can be drawn passing through Z, Y, S and Q

1.12 Differentiation

1. (a) Given that

$$
y=\frac{e^{2 x}}{\sqrt{1-4 x}}
$$

show that

$$
\frac{d y}{d x}=\frac{4 e^{2 x}(1-2 x)}{(1-4 x) \sqrt{1-4 x}}
$$

(b) (i) The equation of the curve is given by for $0 \leq x \leq \pi$. Find $\frac{d y}{d x}$

$$
y=x+\sin ^{2} x
$$

(ii) Find the stationary point of the curve
(c) Find the range of values of x such that the graph is decreasing

$$
y=\ln \left(\frac{x-2}{x-3}\right)^{2}
$$

Credit: S4 AHS P1/2021 PRELIM Qn 5, 6 \& 7

2. The equation of a curve, where $x>0$, is

$$
y=e^{3 x-5 x^{2}+\ln 2 x}
$$

(a) Obtain an expression for $\frac{d y}{d x}$
(b) Find the coordinates of the stationary point of the curve and leave your answer in exact form
(c) Determine the nature of the stationary point of the curve

Credit: S4 NCHS P2/2021 PRELIM Qn 2
3. (a) Given that

$$
y=h e^{x}+\frac{k}{e^{2 x}} \quad \frac{d^{2} y}{d x^{2}}-2\left(\frac{d y}{d x}\right)=e^{x}+2 e^{-x}
$$

find the value of each of the constants h and k
(b) A cylindrical ice block of base radius $r \mathrm{~cm}$ is melting in such a way that the total surface area, $A \mathrm{~cm}^{2}$, is decreasing at a constant rate of $72 \mathrm{~cm}^{2} / \mathrm{s}$. Given that the height is twice the radius and assuming that the ice block retains its shape, calculate the rate of change of r when $r=5$

Credit: S4 ANDSS P2/2020 PRELIM Qn 3 \& 4
4. An open water tank has a rectangular base of length $2 x \mathrm{~cm}$ and breadth $x \mathrm{~cm}$. The height of the water tank is $h \mathrm{~cm}$. It is given that the total surface area of the tank is $2700 \mathrm{~cm}^{2}$
(a) Express the height of the tank, $h \mathrm{~cm}$, in terms of x
(b) Show that the volume of the tank, $V \mathrm{~cm}^{3}$ is given by

$$
V=900 x-\frac{2}{3} x^{3}
$$

(c) Given that V varies with x, find the value of x for which V is maximum
(d) Find the maximum value of V

Credit: S4 JSS P1/2020 PRELIM Qn 8

5. (a) Given that

$$
y=3 x e^{-2 x}
$$

find
(i)

$$
\frac{d y}{d x}
$$

(ii) the value of p if

$$
p=e^{2 x}\left(\frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}-2 y\right)
$$

(b) A curve has the equation

$$
y=\ln \left(\frac{1-\cos x}{\sin x}\right)
$$

(i) Show that

$$
\frac{d y}{d x}=\csc x
$$

(ii) A point P moves along the curve such that $0<x<\frac{\pi}{2}$. Find the exact value(s) of x when the rate of increase of y is twice the rate of increase of x

Credit: S4 NHHS P2/2020 PRELIM Qn 8

1.13 Integration

1. The function f is defined for $x \neq-\frac{1}{3}$ and is such that

$$
f^{\prime \prime}(x)=4 e^{2 x}+\frac{9}{(3 x+1)^{2}}
$$

Given that $f^{\prime}(0)=-1$ and $f(0)=2$, find an expression for $f(x)$

Credit: S4 CHS P2/2021 PRELIM Qn 7

2. The diagram shows part of the curve

$$
y=e^{\frac{1}{3} x}+2
$$

The tangent to the curve at A intersects the y-axis at B
(a) Find the exact area of the shaded region bounded by the tangent $A B$, the curve and the y-axis
(b) Find the equation of the normal to the curve at $x=0$

Credit: S4 CHIJ SNGS P2/2021 PRELIM Qn 11
3. Given that

$$
y=A-B \cos 4 x-\frac{1}{2} \sin 2 x \quad \frac{d^{2} y}{d x^{2}}+4 y=3 \cos 4 x+1
$$

find the value of each of the following constants A and B
Credit: S4 TKSS P2/2021 PRELIM Qn 3
4. It is given that

$$
\int_{0}^{2} f(x) d x=4 \quad \int_{2}^{5} f(x) d x=12
$$

(a) Evaluate

$$
\int_{0}^{5} f(x) d x
$$

(b) Find the value of m for which

$$
\int_{0}^{2}\left[f(x)+m x^{2}\right] d x=\int_{5}^{2} f(x) d x
$$

Credit: S4 BGSS P1/2020 PRELIM Qn 3
5. The diagram below shows the curve $y=\frac{2 x+4}{x-1}$ which cuts the x-axis at P, the y-axis at Q.

The normal to the curve at P meets the y-axis at $R . S$ is the point where the normal meets the curve again
(a) Find the coordinates of P and of Q
(b) Find the coordinates of R and of S
(c) Find the area of the shaded region

Credit: S4 BVSS P1/2020 PRELIM Qn 10

1.14 Differentiation \& Integration

1. (a) Show that

$$
\frac{d}{d x}\left(\tan ^{3} x\right)=3 \sec ^{4} x-3 \sec ^{2} x
$$

(b) Hence, evaluate

$$
\int_{0}^{\frac{\pi}{4}} \sec ^{4} x-2 \sec ^{2} x d x
$$

Credit: S4 ANDSS P2/2021 PRELIM Qn 3
2. (a) Express the following in partial fractions

$$
\frac{2 x^{3}-20 x^{2}-17 x-10}{\left(x^{2}-4\right)\left(2 x^{2}+1\right)}
$$

(b) Differentiate the following with respect to x

$$
\ln \left(2 x^{2}+1\right)
$$

(c) Hence, find

$$
\int \frac{2 x^{3}-20 x^{2}-17 x-10}{\left(x^{2}-4\right)\left(2 x^{2}+1\right)} d x
$$

Credit: S4 ANDSS P2/2020 PRELIM Qn 6
3. (a) Show that

$$
\frac{d}{d x}[(x+3) \sqrt{2 x-3}]=\frac{k x}{\sqrt{2 x-3}}
$$

where k is a constant to be found
(b) Hence, find

$$
\int \frac{x}{\sqrt{2 x-3}} d x
$$

Credit: S4 MFSS P1/2020 PRELIM Qn 11
4. A curve, $y=f(x)$ is such that

$$
f^{\prime \prime}(x)=24 \sin 4 x-12 \cos 2 x
$$

This curve has a stationary point $\left(\frac{\pi}{4}, 1\right)$. Show that, where k, p and q are constants to be determined,

$$
f^{\prime \prime}(x)+4 f(x)=k \sin p x+q
$$

Credit: S4 MGS P1/2020 PRELIM Qn 12

1.15 Kinematics

1. The velocity, $v \mathrm{~m} / \mathrm{s}$, of a particle moving in a straight line, t seconds after passing through a fixed point, O, is given by

$$
v=\frac{27}{2(3 t+1)^{2}}-\frac{3 t+1}{2}
$$

(a) Find the initial acceleration of the particle
(b) Determine, with appropriate working, whether the velocity of the particle is increasing or decreasing
(c) Find the average speed of the particle during the first 6 seconds

Credit: S4 NCHS P1/2021 PRELIM Qn 12
2. A particle P moves in a straight line, so that t seconds after leaving a fixed point O, its velocity, $\mathrm{v} \mathrm{m} / \mathrm{s}$, is given by

$$
v=10 e^{-2 t}-3
$$

(a) Find the initial velocity of P
(b) Find the acceleration of P when $t=1$
(c) Find the value of t when P is at instantaneous rest
(d) Find the total distance travelled by P before it comes to instantaneous rest
(e) Explain why the value of v is always greater than -3

Credit: S4 CHIJ SNGS P2/2020 PRELIM Qn 11

3. A particle moves in a straight line, so that, t seconds after passing a fixed point O, its velocity, $v \mathrm{~m} / \mathrm{s}$ is given by

$$
v=2 e^{0.1 t}-6 e^{0.1-0.4 t}
$$

The particle comes to an instantaneous rest at the point A
(a) Show that the particle reaches A when $t=2 \ln 3+\frac{1}{5}$
(b) Find the acceleration of the particle at A
(c) Find the distance $O A$
(d) Explain whether the particle is again at O at some instant during the sixth second after first passing through O

Credit: S4 GESS P1/2020 PRELIM Qn 7

4. A particle moves in a straight line so that its velocity, $v \mathrm{~m} / \mathrm{s}$, is given by, where t is the time in seconds after the start of motion

$$
v=2 t^{2}-8 t+6
$$

At $t=2$, the displacement of the particle from a fixed point O is 1 m . Find
(a) the times when the particle is instantaneously at rest
(b) the minimum velocity of the particle and explain the significance of the answer obtained
(c) the average speed travelled by the particle in the first 5 seconds

2 Final Answers

2.1 Quadratic Equations \& Inequalities

1. (a) Explain
(b) $2-2 \sqrt{6}<a<2+2 \sqrt{6}$
2. (a) $p>2$
(b) Shown
3. (a) $\left(x-\frac{1}{2}\right)^{2}+\frac{3}{4}$
(b) Shown
4. (a) $x<-5$ and $\quad x>\frac{1}{3}$
(b) $c>-2$

2.2 (Indices) \& Surds

1. (a) $\frac{5}{8}$
(b) $\frac{5-\sqrt{15}}{4}$
2. $(2 \sqrt{5}-1) \mathrm{cm}$
3. $(21-9 \sqrt{3}) \mathrm{cm}$
4. $a=\frac{9}{19} \quad$ and $\quad b=-\frac{4}{19}$

2.3 Polynomials

1. (a) $f(x)=(x+1)(3 x-4)(3 x-1)$
(b) Graph
(c) $-1 \leq x \leq \frac{1}{3} \quad$ and $\quad x \geq \frac{4}{3}$
2. (a) 300
(b) $m=4 \quad$ or $\quad m=25$
3. (a) 3 solutions
(b) $f(x)=3 x^{4}-12 x^{3}-12 x^{2}+57 x+18$
(c) $-11 \frac{13}{16}$
4. (a) $x=1 \quad$ or $\quad x=1.69 \quad$ or $\quad x=-1.19$
(b) 256
5. (a) $p=-3$ and $q=4$
(b) $-26 \frac{1}{4}$
(c) 2 solutions

2.4 Partial Fractions

1. (a) $4+\frac{2}{x}-\frac{1}{x^{2}}-\frac{1}{x+1}$
(b) $4 x+2 \ln x+\frac{1}{x}-\ln (x+1)+c$
2. (a) $\frac{2}{x}+\frac{3}{x^{2}}+\frac{1}{2 x-1}$
(b) Shown
3. (a) Shown
(b) $-\frac{3}{5(2 x-1)}+\frac{14}{5(x-3)}-\frac{7}{(x-3)^{2}}$
(c) $-\frac{3}{5} \ln (2 x-1)+\frac{28}{5} \ln (x-3)+\frac{14}{x-3}+c$
4. (a) $(x+2)\left(x^{2}-2 x+4\right)$
(b) $3+\frac{x^{2}+14 x-12}{x^{3}+8}$
(c) $h=3-\frac{3}{x-2}+\frac{4 x}{x^{2}-2 x+4}$

2.5 Binomial Theorem

1. (a) $x^{5 n}+2 n x^{5 n-11}+2 n(n-1) x^{5 n-22}+\ldots$
(b) Shown
(c) Shown
2. (a) $70 a^{4}$
(b) $210 a^{4}-\frac{112}{a^{2}}$
3. (a) $1+7 x+21 x^{2}+35 x^{3}+\ldots$
(b) $\binom{9}{r}(-2)^{r} x^{18-5 r}$
(c) $18-5 r$
(d) -637
4. (a) $p=\frac{1}{2}$
(b) 512

2.6 Exponential \& Logarithms

1. (a) 40000
(b) 24800
(c) 90 years
(d) 393 polarbears/year
(e) Explain
(f) Graph
2. (a) (i) Graph
(ii) Explain
(b) $x=\frac{1}{\sqrt{3}}$
3. (a) (i) $2^{y}-2^{x}$
(ii) $\frac{1}{2}(5 x-3 y)$
(iii) $2(2+x)$
(b) $x=1$
4. (a) $x=\frac{1}{4} \quad$ or $\quad x=2$
(b) $-\sqrt{293}$
5. (a) (i) 0
(ii) $10^{0.5}$
(b) $p=-\frac{72}{5} \quad$ and $\quad q=-\frac{9}{5}$

2.7 Trigonometry

1. (a) $-\frac{3}{4}$
(b) $-\frac{16}{65}$
(c) $\frac{5 \sqrt{26}}{26}$
2. (a) Shown
(b) $P=22+2 \sqrt{146} \sin \left(\theta+24.4^{\circ}\right)$
(c) Explain
(d) $\theta=47.7^{\circ} \quad$ and $\quad \theta=83.4^{\circ}$
3. (a) Shown
(b) $\frac{1}{4}$
4. (a) (i) Shown
(ii) $x=\frac{\pi}{12}$
$x=\frac{5 \pi}{12}$
$x=\frac{3 \pi}{4}$
(b) (i) Graph
(ii) 3 solutions
5. (a) Shown
(b) Shown
(c) $t=0.152 \mathrm{~s} \quad$ and $\quad t=0.348 \mathrm{~s}$
(d) 0.0980 s
6. (a) Shown
(b) $d=\sqrt{260} \sin \left(\theta+29.7^{\circ}\right)$
(c) 31.5°
(d) $d_{\max }=2 \sqrt{65}$

2.8 Coordinate Geometry

1. (a) $k=6$
(b) Shown
(c) $M(4,-1)$
2. (a) $k=-3$
(b) $y=-\frac{2}{3} x-\frac{4}{3}$
(c) $M\left(-\frac{8}{13},-\frac{12}{13}\right)$
(d) Shown
3. (a) $a=2$
(b) $C(0,6)$
(c) $y=-\frac{1}{2} x+6$
(d) Yes
(e) 30 units 2
4. (a) $C\left(2,1 \frac{1}{2}\right) \quad E\left(1 \frac{1}{3}, 2 \frac{5}{6}\right)$
(b) $F\left(1 \frac{1}{3}, \frac{5}{6}\right)$
(c) Shown

2.9 Further Coordinate Geometry

1. (a) Not tangents
(b) Inside
(c) $(x+3)^{2}+(y+5)^{2}=100$
2. (a) Shown
(b) $C(2,-1)$
(c) $k=-95$
(d) Outside
(e) $A C X$ is a straight line
3. (a) $(x+1)^{2}+(y+1)^{2}=5$ and $(x+2)^{2}+(y+2)^{2}=5$
(b) $x=-3$
(c) 5.89 units
4. (a) Shown
(b) Explain
(c) $(x-1)^{2}+(y-7)^{2}=25$
(d) Outside
(e) $k=17$

2.10 Linear Law

Note:

$$
\text { Questions } 1 \text { (b), } 2(\mathrm{~b}) \& 3(\mathrm{~b}),(\mathrm{c}) \text { are suggested answers, range is } \pm 0.2
$$

1. (a) Graph
(b) (i) $k=1580 \quad m=14.3$
(ii) $t=46.6$ minutes
2. (a) $y=\frac{x^{2}}{13 x-2}$
(b) $k=12.0 \quad n=\frac{1}{2}$
3. (a) Graph
(b) $P_{0}=500 \quad k=\frac{1}{10}$
(c) 17 years

2.11 Proofs in Plane Geometry

1. Prove
2. Prove
3. Prove
4. Prove

2.12 Differentiation

1. (a) Shown
(b) (i) $\left(\frac{3 \pi}{4}, \frac{3 \pi+2}{4}\right)$
(ii) $x<2 \quad$ and $\quad x>3$
(c)
2. (a) $2 e^{3 x-5 x^{2}}\left(-10 x^{2}+3 x+1\right)$
(b) $\left(\frac{1}{2}, e^{\frac{1}{4}}\right)$
(c) Maximum
3. (a) $h=-1 \quad k=\frac{1}{4}$
(b) $\frac{6}{5 \pi} \mathrm{~cm} / \mathrm{s}$
4. (a) $h=\frac{1350-x^{2}}{3 x}$
(b) Shown
(c) $15 \sqrt{2}$
(d) $9000 \sqrt{2}$
5. (a) (i) $3 e^{-2 x}(-2 x+1)$
(ii) -9
(b) (i) Shown
(ii) $\frac{\pi}{6} \mathrm{rad}$

2.13 Integration

1. $f(x)=e^{2 x}-\ln (3 x+1)+1$
2. (a) $\left(\frac{3}{2} e-3\right)$ units 2
(b) $y=-3 x+3$
3. $A=\frac{1}{4} \quad$ and $\quad B=\frac{1}{4}$
4. (a) 16
(b) -6
5. (a) $P(-2,0)$ and $Q(0,-4)$
(b) $R(0,3)$ and $S\left(2 \frac{1}{3}, 6 \frac{1}{2}\right)$
(c) 14.8 units 2

2.14 Differentiation \& Integration

1. (a) Shown
(b) $-\frac{2}{3}$
2. (a) $-\frac{3}{x-2}+\frac{2}{x+2}+\frac{4 x}{2 x^{2}+1}$
(b) $\frac{4 x}{2 x^{2}+1}$
(c) $-3 \ln (x-2)+2 \ln (x+2)+\ln \left(2 x^{2}+1\right)+c$
3. (a) $\frac{3 x}{\sqrt{2 x-3}}$
(b) $\frac{1}{3}(x+3) \sqrt{2 x-3}+c$
4. $18 \sin 4 x+4$

2.15 Kinematics

1. (a) $-82 \frac{1}{2} \mathrm{~m} / \mathrm{s}^{2}$
(b) Decreasing
(c) $5.07 \mathrm{~m} / \mathrm{s}$
2. (a) $7 \mathrm{~m} / \mathrm{s}$
(b) $-2.71 \mathrm{~m} / \mathrm{s}^{2}$
(c) 0.602 s
(d) 1.69 m
(e) Shown
3. (a) Shown
(b) $1.27 \mathrm{~m} / \mathrm{s}^{2}$
(c) 4.81 m
(d) Shown
4. (a) $t=1$ or $t=3$
(b) $-2 \mathrm{~m} / \mathrm{s}$ Opposite direction
(c) $3 \frac{11}{15} \mathrm{~m} / \mathrm{s}$
