A LEVEL H2 MATHEMATICS DIFFERENTIATION TECHNIQUES

MASTERY

- Basic Differentiation Rules
- Derivatives of Trigonometric & Inverse
 Trigonometric Functions
- Higher Order Derivatives
- Implicit Differentiation
- Parametric Differentiation

EXAM

- Need to know for many subsequent chapters, such as differentiation applications, maclaurin series, differential equations
- Usually tested within these other chapters

WEIGHTAGE

- Rarely appears on its own, you're expected to differentiate usually in contextual/application questions
- That being said, considered as high weightage

Standard Differentiation Rules

f(x)	f'(x)
x^n	nx^{n-1}
e^x	e ^x
ln x	$\frac{1}{x}$
sin x	cos x
cos x	$-\sin x$
tan x	sec ² x

f(x)	f'(x)
$[f(x)]^n$	$n[f(x)]^{n-1}f'(x)$
$e^{f(x)}$	$e^{f(x)}f'(x)$
$\ln f(x), f(x) > 0$	$\frac{1}{f(x)} f'(x)$
$\sin f(x)$	$[\cos f(x)]f'(x)$
$\cos f(x)$	$[-\sin f(x)]f'(x)$
tan f(x)	$[\sec^2 f(x)]f'(x)$

Basic Differentiation Rules	
$\frac{d}{dx} [a f(x) \pm b g(x)] = af'(x) \pm bg'(x)$	
$\frac{d}{dx} [f(x) g(x)] = f(x)g'(x) + g(x)f'(x) $ Product Rule	
$\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{g(x)f'(x) - f(x)g'(x)}{\left(g(x) \right)^2}$ Quotient Rule	
$\frac{dy}{dx} = \frac{dy}{dt} \times \frac{dt}{dx}$ Chain Rule	
$\frac{dx}{dy} = \frac{1}{\frac{dy}{dx}}$	

f(x)	f'(x)	
cot x	$-\csc^2 x$	
sec x	sec x tan x	
cosec x	-cosec x cot x	

f(x)	f'(x)	
$\cot f(x)$	$[-\csc^2 f(x)]f'(x)$	
$\sec f(x)$	$[\sec f(x)\tan f(x)]f'(x)$	
cosec f(x)	$[-cosec f(x) \cot f(x)]f'(x)$	

Inverse Trigonometric Functions

f(x)	f'(x)
$\sin^{-1} x$	$\frac{1}{\sqrt{1-x^2}} \text{ , } x < 1$
$\cos^{-1} x$	$-\frac{1}{\sqrt{1-x^2}}, x < 1$
tan ⁻¹ x	$\frac{1}{1+x^2} , x \in \mathbb{R}$

f(x)	f'(x)	
$\sin^{-1} f(x)$	$\frac{f'(x)}{\sqrt{1 - [f(x)]^2}} , f(x) < 1$	
$\cos^{-1} f(x)$	$-\frac{f'(x)}{\sqrt{1-[f(x)]^2}}, f(x) < 1$	
$\tan^{-1} f(x)$	$\frac{f'(x)}{1+[f(x)]^2}, f(x) \in \mathbb{R}$	

Grey boxes represent differentiation rules you would have already learnt about at O Levels, while the **orange boxes** represent basic differentiation rules that are only introduced at A Levels

Higher Order, Implicit & Parametric Differentiation

Higher Order Derivatives		
у	f(x)	у
First Derivative	f'(x)	$\frac{dy}{dx}$
Second Derivative	f''(x)	$\frac{d^2y}{dx^2}$
Third Derivative	f'''(x)	$\frac{d^3y}{dx^3}$
Nth Derivative	$f^n(x)$	$\frac{d^ny}{dx^n}$

Parametric Differentiation

Sometimes we express x and y in terms of another parameter i.e. t

$$x = f(t), y = g(t)$$

We solve this using Chain Rule

$$\frac{dy}{dx} = \frac{dy}{dt} \times \frac{dt}{dx}$$

Implicit Differentiation

Basically differentiation without separating x and y. We differentiate every term with respect to (w.r.t.) x.

$$x^2 + xy - y^2 = 3 \implies$$
 differentiating w.r.t. x ,

Use Product Rule
$$2x + \left(x\frac{dy}{dx} + y\right) - 2y\frac{dy}{dx} = 0$$

$$\frac{dy}{dx} = \frac{-y - 2x}{2}$$

Notice the trend. We differentiate x w.r.t. x normally But when we differentiate w.r.t. x, we need to add in a $\frac{dy}{dx}$

For more notes & learning materials, visit:

www.overmugged.com

Jo _@

Join our telegram channel: **@overmuggedAlevels**

Need help?

Shalyn Tay (Private tutor with 4 years of experience)

82014166 (Whatsapp)

@shalyntay (telegram username)

'A' levels crash course program

Professionally designed crash course to help you get a condensed revision before your 'A' Levels!

Each H2 subject will have 3 crash course modules which will cover their entire H2 syllabus.

The 4 hour module focuses on going through key concepts and identifying commonly tested questions!

The crash courses modules will begin in June 2021 and last till Oct 2021.

Pre-register now on our website and secure your slots!

