

MASTERY

CHAPTER ANALYSIS

- Concept of Sequences and Series
- Arithmetic Progression
- Geometric Progression
- Sigma Notation and Summation of Series
- Method of Difference
- Convergence and Sum to Infinity
- Useful to be familiar with partial fractions
- Practice contextual questions for APGP
- Many students struggle with solving summation questions in which the starting term is not 1
- Appears every year, 1-2 questions
- Typically constitutes approximately 7-8\% of final grade

Sequence

The entire set of ordered elements is a sequence

Term of the sequence is usually denoted by $\boldsymbol{u}_{\boldsymbol{n}}$

Series

$$
S_{n}=u_{1}+u_{2}+u_{3}+\ldots+u_{n}
$$

Sequences \& Series

A sequence is a set of numbers arranged in a defined order. Each number in the sequence is called a term of the sequence, u_{n}

Types of Sequences:

- Finite: sequence terminates
- Infinite: there is no end, sequence keeps going on...
- Convergent: u_{n} approaches a unique value (the limit) as $n \rightarrow \infty$
- Divergent: sequence that does not converge
- Strictly increasing: $u_{n+1}>u_{n}$ for all n
- Strictly decreasing: $u_{n+1}<u_{n}$ for all n
- Constant: $u_{n}=c$ for all n

A series is the sum of the terms of a sequence, denoted by S_{n}. It can have a finite or infinite number of terms.

Useful results:

$$
\begin{gathered}
u_{n}=S_{n}-S_{n-1} \text { for } n>1 \\
u_{1}=S_{1}
\end{gathered}
$$

ARITHMETIC PROGRESSION GEOMETRIC PROGRESSION

Proof for Arithmetic Progressions

To prove a sequence is an AP, show:

$$
\begin{aligned}
u_{n}-u_{n-1}= & \text { constant for all values of } n>1 \\
& (\text { common difference, } d)
\end{aligned}
$$

"Since the difference between 2 consecutive terms is a constant, the terms of this sequence form an arithmetic progression."
"Since $u_{3}-u_{2} \neq u_{2}-u_{1}$ the terms of the sequence do not form an arithmetic progression."

Arithmetic Progression (AP)

An arithmetic progression is a sequence of numbers for which the difference between every 2 consecutive terms is a constant, known as the common difference, d :

$$
u_{n}-u_{n-1}=d
$$

The nth term of the arithmetic progression is:

Sum of first n terms of an arithmetic series is:

$$
S_{n}=\frac{n}{2}[2 a+(n-1) d]=\frac{n}{2}\left(u_{1}+u_{n}\right)
$$

Geometric Progression (GP)

An geometric progression is a sequence of numbers for which the ratio of every 2 consecutive terms is a constant, known as the common ratio, r :

$$
\frac{u_{n}}{u_{n-1}}=r
$$

The \boldsymbol{n} th term of the geometric progression is:

Sum of first n terms of a geometric series is:

$$
S_{n}=\frac{a\left(r^{n}-1\right)}{r-1}=\frac{a\left(1-r^{n}\right)}{1-r}, r \neq 1
$$

Sum to infinity of a geometric series:

$$
S_{\infty}=\frac{a}{1-r},|r|<1
$$

SEQUENCES \& SERIES PART I

SUMMATION OF SERIES
 METHOD OF DIFFERENCE

Summation of Series

The Sigma Notation:

Standard Results

$$
\sum_{r=1}^{n} a=n a \sqrt{\sum_{r=1}^{n} r=\frac{1}{2} n(n+1) \quad \sum_{r=1}^{n} r^{2}=\frac{1}{6} n(n+1)(2 n+1)}
$$

$$
\sum_{r=1}^{n} r^{3}=\frac{1}{4} n^{2}(n+1)^{2}=\left(\frac{1}{2} n(n+1)\right)^{2}=\left(\sum_{r=1}^{n} r\right)^{2}
$$

Arithmetic Progression

$$
\sum_{r=1}^{n}[a+(r-1) d]=\frac{n}{2}[2 a+(n-1) d]
$$

Geometric Progression

$$
\sum_{k=1}^{n} a r^{k-1}=\frac{a\left(r^{n}-1\right)}{r-1}
$$

n is the upper limit of

You may also use the G.C. to find the sum of a series directly
[math > summation]

Properties of Sigma Notation:

$$
\sum_{r=k}^{n} a u_{r} \pm b v_{r}=a \sum_{r=k}^{n} u_{r} \pm b \sum_{r=k}^{n} v_{r}
$$

Convergence / Divergence of Series

Typically, we can also denote $\sum_{r=1}^{n} u_{r}$ by S_{n}.

If S_{n} approaches a unique value as n approaches infinity, we say S_{n} converges and the sum to infinity S_{∞} exists.

Or else it is said to diverge.
Geometric Series:

$$
\sum_{r=1}^{n} \frac{1}{r}-\frac{1}{r+1}
$$

$$
S_{\infty}=\frac{a}{1-r},|r|<1
$$

$$
\begin{aligned}
& =\left(\frac{1}{1}-\frac{1}{2}\right) \\
& +\left(\frac{1}{2}-\frac{1}{3}\right) \\
& +\left(\frac{1}{3}-\frac{1}{4}\right) \\
& +\left(\frac{1}{n-2}-\frac{1}{n-1}\right) \\
& +\left(\frac{1}{n-1} \frac{1}{n}\right) \\
& +\left(\frac{1}{n}-\frac{1}{n-1}\right) \\
& \\
& =\left(\frac{1}{1}-\frac{1}{n-1}\right)
\end{aligned}
$$

Method of Difference

The method of difference is used to evaluate sums where the term u_{r} can be expressed as a difference of two or more terms which will result in the cancellation of most terms leaving only a final solution.

$$
\begin{aligned}
\sum_{r=1}^{n} u_{r} & =\sum_{r=1}^{n}(f(r)-f(r-1)) \\
& =(f(1)-f(0)) \\
& +(f(2)-f(1)) \\
& +(f(3)-f(2)) \\
\vdots & +(f(n-2)-f(n-3)) \\
& +(f(n-1)-f(n-2)) \\
& +(f(n)-f(n-1)) \\
& =(f(n)-f(0))
\end{aligned}
$$

Many questions usually require the use of partial fractions to express the term u_{r} into the difference of more terms.

For more notes \& learning materials, visit:

www.overmugged.com

IG handle:
@overmugged

' A ' levels crash course program

Join our telegram channel:
@overmuggedAlevels

Professionally designed crash course to help you get a condensed revision before your ' A ' Levels!

Need help?
Shalyn Tay
(Private tutor with 4 years of experience)

82014166
(Whatsapp)
@shalyntay
(telegram username)

