

DATE:

SEPTEMBER HOLIDAY REVISION

SEC 3 PURE CHEMISTRY

Instructions: Please complete your Mock Exam Paper under timed conditions and bring it for class.

Table of Contents

1.1 Experimental Design	2
1.2 Methods of Purification and Analysis	3
2.1 Kinetic Particle Theory	4
2.2 Atomic Structure	6
3.1 – 3.3 Ionic, Covalent, Metallic Bonding	7
3.4 Structure and Properties of Materials	9
4.1 Formulae and Equation Writing	16
4.2 The Mole Concept and Stoichiometry	19
5.1 Acids and Bases	23
5.2 Salts	26
6. Qualitative Analysis	27
7.1. Oxidation and Reduction	29

4.2 The Mole Concept and Stoichiometry

relative atomic mass, A _r				
average mass of an atom of an element compared to $\frac{1}{12}$ the mass of one carbon-12 atom				
relative molecular mass, Mr				
average mass of a molecule of a substance (element/compound) compared to $\frac{1}{12}$ the mass of one carbon-12 atom				
relative formula mass, Mr				
average mass of a unit of an ionic compound compared to $\frac{1}{12}$ the mass of one carbon-12 atom				
molar mass				
 mass of one mole of a substance numerical value is equivalent to the relative mass of the substance unit: g/mol 				

Formulae

one mole of any substance (Avogadr	no. of moles	
no. of particles = nc	= mass (in g) molar mass/M _r	
molar volume of gas	molar concentration	mass concentration
1 mole of any gas = 24 dm ³ at r.t.p.	$= \frac{\text{no. of moles}}{\text{volume}} \text{ mol/dm}^3$	$=\frac{\text{mass}}{\text{volume}}$ in g/dm ³
percentage yield	percentage purity	percentage by mass of an element in a compound
= actual yield theoretical yield × 100 %	= mass of pure substance mass of sample × 100 %	$= \frac{A_r \times \text{no. of atoms}}{M_r \text{ of compound}} \times 100 \%$

Calculating percentage by mass of an element in a compound

calcium carbonate: CaCO3	percentage by mass of
M_r of CaCO ₃ = 40 + 12 + 3×16 = 100	Ca: $\frac{40}{100}$ × 100 % = 40 %
⇒ molar mass of CaCO3 = 100 g/mol	100
50 g of CaCO₃ contains:	C: $\frac{100}{100} \times 100\% = 12\%$
20 g of Ca, 6 g of C, 24 g of O	O: $\frac{3 \times 16}{100} \times 100 \% = 48 \%$
percentage by mass of	
Ca: $\frac{20}{50} \times 100 \% = 40 \%$	
C: $\frac{6}{50} \times 100 \% = 12 \%$	
O: $\frac{24}{50} \times 100 \% = 48 \%$	

Limiting and excess reagents

- The limiting reactant is the substance that is completely used up.
- It determines the yield of the reaction, which is the amount of product that forms.

Stoichiometry for gas

Volume ratio of gases = mole ratio of gases in a chemical equation

Exercise

$A_{2}(CO_{3})_{3}(s) + 3H_{2}SO_{4}(aq) \rightarrow A_{2}(SO_{4})_{3}(aq) + 3H_{2}O(1) + 3CO_{2}(g)$				
• mole of Al ₂ (CO ₃) ₃ reacts with moles of sulfuric acid to produce moles of CO ₂ .				
1. Complete reaction (theoretical)				
234 g of $Al_2(CO_3)_3$ reacts completely with dm ³ of 1 mol/dm ³ H ₂ SO ₄ to produce g of CO ₂ .				
\circ The volume of CO ₂ produced is dm ³ .				
2. Excess and limiting reactants				
Excess Al ₂ (CO ₃) ₃ was added to 25 cm ³ of 1 mol/dm ³ H ₂ SO ₄ .				
• Only moles of $Al_2(CO_3)_3$ react. \equiv g of $Al_2(CO_3)_3$				
○ moles of CO ₂ will be produced. \equiv dm ³ of CO ₂ \equiv g of CO ₂				
3.00 g A l_2 (CO ₃) ₃ was added to 50 cm ³ of 1 mol/dm ³ sulfuric acid.				
\circ moles of Al ₂ (CO ₃) ₃ and moles of H ₂ SO ₄ are available.				
\Rightarrow moles of Al ₂ (CO ₃) ₃ will react completely with moles of H ₂ SO ₄ .				
\Rightarrow Since moles of sulfuric acid is available, it is the reagent.				
 is the limiting reagent. 				
\circ no. of moles of Al ₂ (SO ₄) ₃ produced = mol				
 no. of moles of H₂O produced = mol 				
○ no. of moles of CO ₂ produced = mol ≡ cm ³ of CO ₂ ≡ g of CO ₂				
3. Calculating percentage purity of sample				
A 300 g sample containing impure $Al_2(CO_3)_3$ was added to 25 cm ³ of 1 mol/dm ³ H ₂ SO ₄ to produce 72 dm ³ of CO ₂ .				
• Mass of pure $Al_2(CO_3)_3$ present = g				
• The percentage purity of the sample is %.				
4. Calculating percentage yield of a reaction				
234 g $Al_2(CO_3)_3$ was reacted with excess sulfuric acid to produce 120 g of CO_2 .				
○ If reaction was 100 % complete, g of CO₂ will be produced.				
• The percentage yield of the reaction is %.				

D <u>Exercise</u>

$N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$				
• mole of N ₂ reacts with moles of H ₂ to produce moles of NH ₃ .				
1. Complete reaction (theoretical)				
 28 g of N₂ reacts completely with g of H₂ to produce g of NH₃. The volume of NH₃ produced is dm³. 				
cm ³ of N ₂ reacts completely with 90 cm ³ of H ₂ to produce cm ³ of NH ₃ .				
2. Excess and limiting reactants				
14 of N_2 and 6 g of H_2 are mixed.				
\circ mol of N ₂ and mol of H ₂ are available.				
\Rightarrow 3 mol of H ₂ will react completely with mol of N ₂ .				
$_{\odot}$ Since 0.5 mol of N_2 is available, it is the reagent.				
○ mol of NH ₃ will be produced \equiv dm ³ of NH ₃ \equiv g of NH ₃				

	examples		
Types of formulae	ethyl ethanoate	oxalic acid	
	CH ₃ COOCH ₂ CH ₃	(COOH) ₂	
empirical formula			
shows the simplest ratio of the constituent elements in a compound			
molecular formula			
shows the actual number of atoms of the constituent elements in a compound			

D Deriving empirical and molecular formulae

		/ Answer tem	plate:		
	element₁	element ₂		ionic compound	H ₂ O
(percentage by) mass					
A _r /molar mass					
no. of moles					
mol ratio				1	x
Let the molecular formula of the compound be (empirical formula) _n . $n \times M_r$ of empirical formula = M_r of compound n =			Finding moles of wat crystallisation in hyd e.g. CuSO4.5H2O FeSO4.7H2O	<u>er of</u> rated crysta	

Comparing acids of different basicity (same concentration and volume)

 (H_{C}) Particles: HC*l* molecules; (H_{C}) ions

Molar mass of HCl = ____ g/mol

	liquid		e e e e e e e e e e e e e e e e e e e	
no. of moles	5 mol			
mass		250 g		
no of particles	HCl molecules			
present	H atoms C <i>l</i> atoms		H⁺ ions C <i>l</i> − ions	
volume		dm ³	250 cm ³	
molar concentration			mol/dm ³	
mass concentration			g/dm ³	

Molar	mass	of	H_2SO_4	=	g/mol
-------	------	----	-----------	---	-------

			 Set of the set of t	
no, of moles	5 mol		•	
mass		250 g		
	H_2SO4 molecules			
no. of particles	H atoms S atoms O atoms		H⁺ ions SO₄ ^{2−} ions	
volume		dm ³	250 cm ³	
molar concentration			mol/dm ³	
mass concentration			g/dm ³	

5.1 Acids and Bases

Acid				
a substance	that ionises in water to produce H^* ior	าร		
basicity	maximum number of H ⁺ ions formed	per acid molecule		
strength	extent of dissociation of the acid molecule in water o 100 %: strong o < 100%: weak			
Examples				
strong monobasic - hydrochloric acid, $HCl \rightarrow H^+ + Cl^-$ - nitric acid, $HNO_3 \rightarrow H^+ + NO_3^-$		strong dibasic - sulfuric acid, $H_2SO_4 \rightarrow 2H^+ + SO_4^{2-}$		
weak monobasic - ethanoic acid, CH ₃ COOH \Rightarrow CH ₃ COO ⁻ + H ⁺		weak dibasic - carbonic acid, $H_2CO_3 \rightleftharpoons 2H^+ + CO_3^{2^-}$		

	Base				
a substance	which reacts with an acid to form a salt and water only				
 meta 	al oxides, metal hydroxides				
	Alkali				
a soluble bas	a soluble base which dissociates in water to produce OH ⁻ ions				
strength	extent of dissociation of the alkali in water				
	 100 %: strong 				
	○ < 100%: weak				
	Examples				
strong					
sodium hydroxide, NaOH(aq) \rightarrow Na ⁺ (aq)+ OH ⁻ (aq)					
potassium hydroxide, $KOH(aq) \rightarrow K^{+}(aq)+OH^{-}(aq)$					
weak					
aqueous ammonia, NH ₃ (g) + H ₂ O (l) \rightleftharpoons NH ₄ ⁺ (aq) + OH ⁻ (aq)					

Scenario: acidic soil contains a high conc for plants to thrive	entration of H⁺ ions that may be unsuitable
(1) fertilisers contain ions to provide the element necessary for plant growth	(2) calcium hydroxide can be used to acidic soil to control the pH for optimum plant growth
What happens: (2) removes the ions in the acidic soil (1), causing ammonia to form according to the	via It also reacts with ne following chemical equation:
This remove the content in the soil	which plants cannot absorb for their growth.

Chemical Reactions Involving Acids and Bases

Chemical equation	acid + metal \rightarrow salt + hydrogen gas			
lonic equation	*spectator ion: anion from acid			
Observations	 effervescence of a colourless and odourless gas (main observation) temperature of mixture increases metal decreases in size (if in excess) or completely reacts in 			
Test for gas	Place a lighted splint into a test tube containing the gas. The lighted splint extinguishes with a 'pop' sound.			
Note!	 not suitable for unreactive metals, e.g reaction of lead metal with HCl and H₂SO₄ results in formation of ppt as well 			

Chemical equation	acid + carbonate \rightarrow salt + carbon dioxide + water		
lonic equation	*spectator ion: anion from acid		
Observations	 effervescence of a colourless and odourless gas (main observation) carbonate decreases in size (if in excess) or completely reacts in the acid (if a soluble salt is formed) 		
Test for gas	Bubble the gas through aqueous calcium hydroxide (limewater). A white precipitate forms in limewater.		

Chemical equation	acid + insoluble base \rightarrow salt + water		
lonic equation	*spectator ion: anion from acid		
Observations	 base decreases in size (if in excess) or completely reacts in the acid (if a soluble salt is formed) temperature of mixture increases 		
Chemical equation	acid + alkali \rightarrow salt + water		
lonic equation	*spectator ion: cation from alkali, anion from acid		
Observations	temperature of mixture increases		
Note!	• acid + aqueous ammonia \rightarrow		

Chemical equation	alkali + ammonium salt \rightarrow salt + water + ammonia			
lonic equation				
Observations	• a colourless and pungent gas is evolved upon warming mixture			
Test for gas	Place a damp red litmus paper near the gas. The damp red litmus paper turns blue.			

			Т	he nH Sca	le		r		
<u>pH</u>	Stomac	h Acid Vine	egar Coffe	ee Water	Am Baking Soda Soli	monia ution Bleach		pH :	= −log ₁₀ [H⁺]
		5					[H⁺] is tł	ne conce	entration of H⁺ ions
	Battery	Lemon	Tomato	Milk Blo	od Stomach Tablets	Soap Drain Cleaner	pł	1	[H ⁺]
			Č				0		1 mol/dm ³
	Y	Y		Y			1		0.1 mol/dm ³
	0 1	23		6 7 8	3 9 10 1	1 12 13 14	2		0.01 mol/dm ³
	Acidic	:		Neutral		Alkaline	7		0.0000001 mol/dm ³
		acid	ic			neutral			alkaline
[H⁺] > [OH [−]]				[H⁺] = [OH [−]] [H⁺] < [OH [−]]		[H⁺] < [OH [−]]			

burette

conical flask

retort stand

<u>Titration</u>

- involves the exact addition of one solution to another for complete reaction
 - \circ acid-alkali, acid-carbonate
 - $\circ \quad \text{redox} \quad$

pH curve

A pH curve may be obtained using a pH meter and a data logger

/ Based on the pH curve, the following may be inferred:

- $\hfill\square$ the nature (acidic/alkaline) of the solutions in the burette and conical flask
- □ the strength of the acid/alkali (refer to initial or final pH, or equivalence point)
- □ volume of solution required for complete neutralisation

Equivalence point for neutralisation reactions

Titration	pH at equivalence point		
strong acid - strong base	рН 7		
strong acid - weak base	below pH 7 (Usually around pH 5)		
weak acid - strong base	above pH 7 (Usually around pH 9)		
weak acid - weak base	inconclusive		

Types of oxides

basic	amphoteric	acidic	neutral
most metal oxides e.g. Na ₂ O, MgO, Fe ₂ O ₃		most non-metal oxides e.g. NO2, SO2, CO2, SiO2	
reacts with acids	reacts with acids and alkalis	react with alkalis	no reaction with acids and alkalis

5.2 Salts

Solubility Table

ionic compounds	soluble in water	insoluble in water
group 1, ammonium "SPA" Sodium-Potassium- Ammonium	ALL	none
nitrate	ALL	none
chlorides, iodides	ALL except	lead(II) chloride, PbC <i>l</i> ₂ silver chloride, AgC <i>l</i> lead(II) iodide, PbI ₂ silver iodide, AgI
sulfates	ALL except	barium sulfate, BaSO₄ calcium sulfate, CaSO₄ lead(II) sulfate, PbSO₄
carbonates	SPA salts	ALL except

Exercise

crystallisation

salt	reactant 1	reactant 2	method
lead(II) chloride			
	HCl	КОН	
zinc nitrate			

<u>Exercise</u>

6. Qualitative Analysis

Test for metal cations (Zn²⁺, Al³⁺, Ca²⁺, Cu²⁺, Fe²⁺, Fe³⁺)

Addition of NaOH(aq) dropwise until in excess

observation	ppt soluble in excess NaOH	ppt insoluble in excess NaOH
white ppt formed	Zn(OH) ₂ , A <i>l</i> (OH) ₃ colourless solution formed	Ca(OH)2
coloured ppt formed	_	Cu(OH) ₂ , Fe(OH) ₂ , Fe(OH) ₃

Addition of NH₃(aq) dropwise until in excess

observation	ppt soluble in excess NH ₃	ppt insoluble in excess NH ₃
white ppt formed	Zn(OH)2 colourless solution formed	A <i>l</i> (OH) ₃
coloured ppt formed	Cu(OH)2 solution formed	Fe(OH) ₂ , Fe(OH) ₃
no observable change for Ca ²⁺	_	_

Test for ammonium ion

Add aqueous sodium hydroxide and warm the mixture.

observation	A colourless and pungent gas forms, causing damp red litmus paper to
observation	turn blue.

Test for anions

test		observation	anion present	
		Effervescence of colourless and odourless gas observed.	CO 2 ²⁻	
add diluta aitric		When gas was bubbled through limewater, a white ppt (CaCO $_3$) is produced.	CO3-	
acid	followed by Ba(NO3)2	white ppt (BaSO ₄)	SO4 ²⁻	
	followed by	white ppt (AgCl)	C <i>l</i> −	
	AgNO ₃	yellow ppt (Agl)	I	
Add dilute NaOH(aq), followed by aluminium foil and warm the mixture. $NO_3^-(aq) \rightarrow NH_4^+(aq) \rightarrow NH_3(g)$		A colourless and pungent gas was evolved, causing damp red litmus paper to turn blue.	NO ₃ -	

Test for gases:

gas	colour, smell	test	observation
CO ₂	colourless, odourless	limewater	white ppt
NH₃	colourless, pungent	damp red litmus paper turns blue	
Cl ₂	greenish-yellow, pungent	damp blue litmus paper	turns red first then gets bleached
H ₂	colourless, odourless	lighted splint	extinguishes with a 'pop' sound
O ₂	colourless, odourless	glowing splint	relights /rekindles
SO ₂	colourless, pungent	acidified KMnO4 OR acidified K2Cr2O7	purple to colourless OR orange to green

D Note:

- 1. litmus paper must be damp to test for gases
- 2. SO_2 is a reducing agent which reacts with oxidising agents

END OF YEAR MOCK EXAMINATION SECONDARY THREE BASED ON 2024 SEAB SYLLABUS

CHEMISTRY

Paper 1

6092/01 September 2024 30 minutes

READ THESE INSTRUCTIONS FIRST

Write in soft pencil. Do not use staples, paper clips, glue or correction fluid.

There are **twenty** questions on this paper. Answer **all** questions. For each question, there are four possible answers A, B, C and D.

Choose the **one** you consider correct and record your choice in **soft pencil** on the Optical Answer Sheet.

Fill in the Optical Answer Sheet very carefully.

Each correct answer will score one mark. A mark will not be deducted for a wrong answer. Any rough working should be done in this question paper.

The use of an approved scientific calculator is expected, where appropriate.

Shade the corresponding lozenge.

1	A	B	C	D
2	A	B	C	D
3	A	В	C	D
4	A	В	C	D
5	A	В	C	D
6	A	В	C	D
7	A	B	C	D
8	A	B	C	D
9	A	B	C	D
10	A	В	C	D
11	A	B	C	D
12	A	B	C	D
13	A	В	С	D
14	A	B	C	D
14 15	A A A	B B B	C C	D D D
14 15 16	A A A A	B B B B B	C C C C	D D D D
14 15 16 17	A A A A A A	B B B B B B B B	C C C C	D D D D D D
14 15 16 17 18	A A A A A A A A	B B B B B B B B B B B B B	C C C C C C C C	D D D D D D D D D
14 15 16 17 18 19	A A A A A A A A	B B B B B B B B B B B B	C C C C C C C C C C C C C C C C C C C	D D D D D D D D D D

Total score: _____

The diagrams below show three methods of collecting gases.

Hydrogen gas has low solubility in water.

Which method(s) is / are suitable for collecting hydrogen gas?

- (A) 1 only (B) 2 only
- (C) 1 and 3 only (D) 2 and 3 only

Question 2

A balloon filled with gas X is placed inside a beaker that is filled with gas Y.

What pair of gases would cause the balloon to shrink a few hours later?

	gas X	gas Y		
(A)	ammonia	nitrogen		
(B)	argon	ammonia		
(C)	carbon dioxide	oxygen		
(D)	nitrogen	carbon monoxide		

Which statement best explains why sodium chloride has a lower melting point than magnesium oxide?

- (A) Sodium is more reactive than magnesium.
- (B) Sodium chloride is covalent but magnesium oxide is ionic.
- (C) The molar mass of magnesium oxide is lower than sodium chloride.
- (D) The electrostatic forces of attraction are weaker in sodium chloride than in magnesium oxide.

Question 4

Ethanol has the structure shown.

How many valence electrons in a molecule of ethanol, C₂H₅OH, are **not** involved in bonding?

(A)	0	(B)	2
(C)	4	(D)	8

Question 5

Which particles are responsible for the conduction of electricity through an ionic compound in its aqueous or molten state?

- (A) electrons only
- (B) anions and cations
- (C) cations and electrons
- (D) cations, anions and electrons

Which of the following best explains the reason why the substance with the structure shown below would be a good lubricant?

- (A) weak covalent bonds between the layers of atoms
- (B) strong covalent bonds between the layers of atoms
- (C) weak forces of attraction between the layers of atoms
- (D) weak electrostatic forces of attraction between the layers of atoms

Question 7

Hydrogen reacts with oxygen according to the following equation.

$$2H_2(g) + O_2(g) \rightarrow 2H_2O(l)$$

What is the total volume of gas left in the mixture when 30 cm³ of hydrogen reacts with 30 cm³ of oxygen? (All volumes are measured at room temperature and pressure.)

(A)	15 cm ³	(B)	30 cm ³
(C)	45 cm ³	(D)	60 cm ³

Question 8

An impure sample of 1.00 g of silver oxide reacts with excess nitric acid to form silver nitrate and water. The reaction produces 0.86 g of silver nitrate.

 $Ag_2O + 2HNO_3 \rightarrow 2AgNO_3 + H_2O$

What is the percentage purity of the impure sample?

- (A) 31.3 % (B) 58.7 %
- (C) 85.5 % (D) 86.0 %

Melamine is a plastic containing 28.6 % carbon, 4.8 % hydrogen and 66.6 % nitrogen by mass.

If the relative molecular mass of melamine is 126, what is its molecular formula?

- (A) CH_2N_2
- (B) C₂H₄N₄
- (C) C₃H₆N₆
- $(D) \quad C_4H_8N_8$

Question 10

250 cm 3 of 3.00 mol/dm 3 dilute hydrochloric acid is added to 350 cm 3 of 2.00 mol/dm 3 dilute hydrochloric acid.

What is the concentration of the resulting solution?

(A)	1.46 mol/dm ³	(B)	2.42 mol/dm ³
(C)	2.50 mol/dm ³	(D)	8.33 mol/dm ³

Question 11

Which statement about the same concentration and volume of ethanoic acid and hydrochloric acid is correct?

- (A) Ethanoic acid has a lower pH than hydrochloric acid.
- (B) Both ethanoic acid and hydrochloric acid are strong monobasic acids.
- (C) Hydrochloric acid is a strong monobasic acid, while ethanoic acid is a weak monobasic acid.
- (D) Both ethanoic acid and hydrochloric acid give the same colour when tested with Universal Indicator.

Question 12

Which statement does not describe a property of aqueous ammonia?

- (A) It forms a salt with sodium hydroxide.
- (B) It has a pH of between 8 and 9.
- (C) It reacts with sulfuric acid to form salt and water.
- (D) It reacts with copper(II) sulfate to form a blue precipitate.

Which salt should not be prepared by reacting a dilute acid with excess metal?

- (A) iron(II) sulfate (B) lead(II) chloride
- (C) magnesium sulfate (D) zinc nitrate

Question 14

Which salt is not prepared by titration?

- (A) ammonium nitrate
- (C) potassium sulfate (D) sodium sulfate

Question 15

Which reagent could be used to distinguish between dilute hydrochloric acid and dilute nitric acid?

(B)

- (A) aqueous silver nitrate
- (B) aqueous sodium hydroxide

magnesium nitrate

(C) magnesium oxide (D) zinc carbonate

Question 16

A student carried out a series of tests on an aqueous solution of sodium carbonate and recorded his observations.

Which test should be repeated because of an incorrect observation recorded?

	test	observation		
(A)	add aqueous ammonia solution	no visible reaction		
(B)	add barium chloride solution	no visible reaction		
(C)	add copper(II) chloride solution	blue precipitate formed		
(D)	add dilute hydrochloric acid	effervescence is observed		

J is an aqueous solution.

On addition of aqueous sodium hydroxide to **J**, a green precipitate is formed. The resulting mixture is heated and no gas is formed.

Aluminium foil is added to the warmed mixture. A gas is formed that turns damp red litmus paper blue.

Which ions could be present in J?

(A)	Fe^{2+} and NH_4^+	(B)	Fe^{3+} and NH_4^+
(C)	Fe^{2+} and NO_3^-	(D)	Fe^{3+} and NO_3^-

Question 18

In which pair does the underlined element have the same oxidation state in its compounds?

(A)	Cu <u>Cl</u> 2 and Na <u>Cl</u>	(B)	H ₂ S and SO ₂
(C)	<u>Fe</u> 2O3 and <u>Fe</u> SO4	(D)	H_2O_2 and H_2O

Question 19

Which is the oxidising agent in the reaction between iron and nitric acid?

$$\label{eq:Fe} \begin{array}{cc} Fe(s) + 2HNO_3(aq) \rightarrow Fe(NO_3)_2(aq) + H_2(g) \\ \\ (A) & H^+ & (B) & Fe \\ \\ (C) & Fe^{2+} & (D) & NO_3^- \end{array}$$

Question 20

Which pair of compounds shows that transition elements have variable oxidation states?

- (A) Cr₂O₃ and CrBr₃
- (B) CuSO₄ and CuCl₂
- (C) Fe_2O_3 and $FeCl_2$
- (D) NiO and NiCl₂

END OF YEAR MOCK EXAMINATION SECONDARY THREE BASED ON 2024 SEAB SYLLABUS

CHEMISTRY

Paper 2

6092/02 September 2024 40 minutes

READ THESE INSTRUCTIONS FIRST

Write in dark blue or black pen. You may use a pencil for any diagrams or graphs. Do not use staples, paper clips, glue or correction fluid.

Answer all questions in the spaces provided.

The number of marks is given in brackets [] at the end of each question or part question.

The use of an approved scientific calculator is expected, where appropriate.

<u>SCORE</u>	
Paper 1	20
Paper 2	30
TOTAL	50

The chemical formulae of eight substances are shown below.

H ₂	MgSO ₄	NaC <i>l</i>	CO
AgNO ₃	CH₄	ZnO	Pb

Answer the following questions using the chemical formulae of the substances given above.

a)	Whie	ch substance has both covalent and ionic bonds?	[1]
)	Whic	ch substance can conduct electricity in its solid state?	[1]
:)	(i)	Which two substances form a white precipitate when their soluti with one another?	ons are mixed [1]
	(ii)	Construct an ionic equation for your answer in (c)(i).	[1]
			[Total: 4]

- (a) Sodium chloride has a high melting point.
 - Draw a 'dot-and-cross' diagram to show the electronic structure of sodium chloride. You only need to show the outer shell electrons. [1]

(ii) Use your knowledge of bonding in sodium chloride and chlorine gas to explain the difference in their melting points. [2]

(b) Describe a simple experiment which you could carry out to determine whether an aqueous solution contained an ionic or covalent compound.

Your answer should clearly state all the equipment required and how the observation: made would lead to the conclusion. [3]

[Total: 6]

The flowchart shows the observation of some reactions with solid A.

(a) Identify A, B, C and D.

(b) Write an ionic equation, with state symbols, for the reaction between solid A and dilute nitric acid. [2]

(c) State the colour change in **D** when it was left to stand. [1]

[Total: 7]

[4]

The table shows the colours of manganese in different oxidation state.

substance	colour	oxidation state of manganese
Mn	silver	0
MnO₄ [−]	purple	
Mn ²⁺	light pink	+2
MnO ₄ ^{2–}	green	
MnO ₂	brown	+4

- (a) Complete the table above by filling in the oxidation state of manganese for MnO_4^- and $MnO_4^{2^-}$. [2]
- (b) When manganese(II) nitrate is heated, it decomposes to form manganese(IV) oxide and an acidic gas only.
 - Write a balanced chemical equation for the decomposition of manganese(II) nitrate. [1]
 - (ii) Describe the colour change of manganese(II) nitrate during the reaction. [1]

[Total: 4]

The reaction between nitrogen and hydrogen to form ammonia is shown below.

$$N_2 + 3H_2 \rightleftharpoons 2NH_3$$

(a) 3 tonnes of hydrogen were reacted in the reaction to produce 2 tonnes of ammonia.
 Calculate the percentage yield. [2]
 (1 tonne = 1 000 000 g)

- (b) Ammonia dissolves in water to form aqueous ammonia, which is a weak alkali.
 - (i) Write the dissociation equation, with state symbols, for aqueous ammonia. [1]
 - Based on your answer in (b)(i), explain whether aqueous ammonia conducts electricity.
- (c) Aqueous ammonia reacts with sulfuric acid to form ammonium sulfate.

$$2\mathsf{NH}_3 + \mathsf{H}_2\mathsf{SO}_4 \to (\mathsf{NH}_4)_2\mathsf{SO}_4$$

Calculate the percentage by mass of nitrogen in ammonium sulfate.

[2]

(d) A water supply is suspected to be contaminated with ammonium sulfate or ammonium carbonate.

To identify the anion present, the student performed the following tests:

- 1. Add aqueous barium chloride to a test tube containing the sample of water.
- 2. Measure the height of the precipitate formed after 5 minutes.
- 3. Add excess dilute nitric acid to the above mixture.
- 4. Measure the height of the precipitate formed after 5 minutes.

The results were obtained in a graph as seen below.

- Based on the results, give the chemical formula of the anion present in the water supply.
- (ii) Explain your answer in d(i) with reference to the information provided. [2]

[Total: 9]

Secondary | IP | JC Tuition

OVERMUGGED

Looking for a tuition centre that can ensure your 'A' grades?

Overmugged is SG's fastest growing tuition brand with a <u>70% DISTINCTION RATE!</u>

COME JOIN OUR BOOSTER CLASSES from <u>9 Sep – 6 Oct weekly!</u>

Scan here to enrol now CONTACT US:

- S 8770 2540
- www.overmugged.com

LOCATIONS:

BUKIT TIMAH | KOVAN TAMPINES | MARINE PARADE TOA PAYOH | JURONG EAST WOODLANDS

What we offer

Expert Ex-MOE Tutors with 10 years of experience

24/7 Tutor Hotline, Curated Study Resources and Educational Podcasts

Revision Webinars and Educational Events for students and parents

Study Spaces and a Motivational Learning Environment

Vibrant Student Community, Caring Tutors and Unlimited Welfare!

Sec 3 Booster Classes

Pure Chemistry

Kovan	Tuesday	5PM-7PM
Marine Parade	Thursday	7.30PM-9.30PM
Tampines	Friday	7.30PM - 9.30PM
Bukit Timah	Saturday	12PM-2PM
Jurong East	Saturday	4PM - 6PM

Pure Physics

Kovan	Monday	5PM-7PM
Marine Parade	Tuesday	5PM - 7PM
Tampines	Thursday	7.30PM - 9.30PM
Jurong East	Saturday	11AM - 1PM
Bukit Timah	Saturday	2PM-4PM

Pure Biology

Tampines	Tuesday	5PM - 7PM
----------	---------	-----------

Sec 3 Booster Classes

Combined Science Chemistry & Biology

Kovan F	Friday	4.30PM-6.30PM
---------	--------	---------------

Combined Science Chemistry & Physics

Kovan	Tuesday	5PM-7PM
Bukit Timah	Wednesday	4PM-6PM
Tampines	Friday	5PM - 7PM
Marine Parade	Friday	5PM-7PM
Jurong East	Saturday	2PM - 4PM

Sec 3 Booster Classes

A-Math

Tampines	Thursday	5PM - 7PM
Kovan	Thursday	5PM-7PM
Bukit Timah	Saturday	11AM - 1PM
Kovan	Sunday	10AM-12PM
Jurong East	Sunday	2PM - 4PM

E-Math

Kovan	Tuesday	7PM-9PM
Tampines	Thursday	7.30PM - 9.30PM
Kovan	Saturday	12PM-2PM
Bukit Timah	Saturday	4PM - 6PM
Jurong East	Sunday	4PM - 6PM

Sec 3 IP Booster Classes

Sec 3 IP Chemistry

Bukit Timah	Monday	5PM-7PM
Bukit Timah	Thursday	7.30PM- 9.30PM
Bukit Timah	Saturday	3PM-5PM

Sec 3 IP Physics

Bukit Timah	Monday	7.30PM- 9.30PM
Bukit Timah	Wednesday	7.30PM- 9.30PM
Bukit Timah	Saturday	5PM-7PM