

END OF YEAR MOCK EXAMINATION SECONDARY THREE COMBINED PHYSICS (ANSWER KEY)

<u>Paper 1</u>

1	A	B	C	D
2	A	B	С	D
3	A	В	С	D
4	A	B	С	D
5	A	B	C	D
	Α	В	С	D
6				
6 7	A	B	C	D
6 7 8	A A A	B B B	C C C	D D D
6 7 8 9	A A A	B B B B B	C C C	D D D D D

Paper 2

Question 11

a = (0 - 40) / 20

Deceleration of the car is 2.0 m/s^2 .

(b) Distance travelled = area under the graph

$$=\frac{1}{2}(30+60)(40)$$

= 1800 m

(c) average speed = total distance / total time

= 1800 / 60

= 30 m/s

Question 12

- (a) The driving force is equal to the resistive forces and is in the opposite direction.Hence, the resultant force is zero and the car moves at constant speed.
- (b)(i) $F_{net} = ma$

= 1300 x 2.5 = **3250 N**

(b)(ii) $F_{net} = F_{driving force} - F_{resistive force}$

3250 = F_{driving force} - 1250

 $F_{driving force}$ = 4500 N

Question 13

- (a)(i) E_{GP} = mgh = 500 x 10 x 30 = **150 000 J**
- (a)(ii) Maximum speed is achieved when all of the energy in the E_{GP} store is transferred to the E_K store.

$$\frac{1}{2}mv^{2} = 150\ 000$$
$$\frac{1}{2}(500)v^{2} = 150\ 000$$
$$v^{2} = 600$$
$$v = 24.5\ m/s$$

(b) Work is done against friction.

Some of the energy in the gravitational potential store of the cart dissipated into the internal store of the surroundings and cart due to friction.