

SECONDARY 3 MATHEMATICS Quadratic Graphs, Similarity of 3D Figures, Circular Measure September EOY Revision

Quadratic Graphs

- 1. Sketching of graphs $y = ax^2 + bx + c$
 - Identify the shape of the quadratic graph based on the signature of the quadratic coefficient α .
 - *y* intercepts of the graph can be obtained by solving for x = 0.
 - x- intercepts of the graph can be obtained by solving for f(x) = 0.
 - Determine the Maximum/Minimum values with the above mentioned 3 methods.

Curve	Assumptions	Feature
$y = \pm (x - h)^2 + k$	h , $k > 0$	(<i>h, k</i>) is the turning point of the graph
$y = \pm (x - p)(x - q)$	p , $q>0$	(p, 0) and $(q, 0)$ are the x- intercepts

- 2. Find the roots of quadratic equations
 - a) Factorisation
 - This method works when the equation is easily factorized.
 - Factorise $f(x) = ax^2 + bx + c = 0$ to get the product of its linear factors

a(x-p)(x-q) = 0 where p and q are known as the roots of the

equation.

- Use the multiplication property that when $ab = 0 \Rightarrow a = 0$ or b = 0
- b) Quadratic Formula
 - The roots of the equation $y = ax^2 + bx + c = 0$ can be obtained with $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}, a \neq 0$
- c) Completing the Square
 - Rearrange the quadratic equation $f(x) = ax^2 + bx + c = 0$ in the form of

$$f(x) = a(x-h)^2 + k = 0$$

• Make $(x - h)^2$ the subject of the equation

$$f(x) = (x-h)^2 = \frac{k}{a}$$

sides, must take both the positive and negative of a square root

Take note that when square rooting on both

 Take the square roots of both sides of the equation and solve for the values of x

$$x = h + \sqrt{\frac{k}{a}}$$
 $x = h - \sqrt{\frac{k}{a}}$

- 1 (a) Express $x^2 + 16x 30$ in the form $(x + h)^2 k$, where *h* and *k* are constants to be determined.
 - (b) Hence, solve the equation $x^2 + 16x 30 = 0$, giving your answers correct to 2 decimal places.
 - (c) Sketch the graph of $y = x^2 + 16x 30$, showing the turning point and *y*-intercept clearly.

- 2 (a) Express $-x^2 6x 10$ in the form of $a(x p)^2 + q$, where a, p and q are integers to be determined.
 - (b) Sketch the graph of $y = -x^2 6x 10$ on the axes below. Indicate clearly the coordinates of the point where the graph crosses the *y*-axis and the turning point.

(c) Hence, explain without solving, why there are no solutions of x for the equation $-x^2 - 6x = 10$

3 The figure shows the graph of $y = (x - p)^2 + q$. Points A(2,7), B(4,7) lie on the curve.

- (a) Find the values of p and of q.
- (b) Hence, find the coordinates of the *x*-intercepts of the curve.

Similarity of 3D Figures

Remember - If the figures are similar, we do not need to find the dimensions of the figure, nor use area/volume formulas to find the area and volume!

Area of similar planar figures

If 2 figures are similar, then the ratio of their areas is equal to the square of the ratio of the lengths of any pairs of corresponding sides.

Volume of similar planar figures

If 2 solids are similar, then the ratio of their volumes is equal to the cube of the ratio of the lengths of any pairs of corresponding sides

4 The figure below shows a piece of wood that is in the form of a right circular cone with base diameter of 18 cm. The curved surface area of the cone is 135π cm².

(a) Find the height of the cone

The cone is cut into two portions with a horizontal cut. The upper portion is a cone of base diameter 6 cm and the lower portion is a frustum of height x cm.

(b) Find the height of the frustum.

A right cylindrical hole of diameter 6 cm is drilled through the frustum as shown in the figure below. The wood weighs 810 kg/m^3 .

(c) Find the mass, in grams, of the solid which remains in the frustum.

5 A solid cone is made up of frustum *A*, frustum *B* and cone *C*. The ratio of the slant height of *A*: *B*: *C* is given by 2: 3: 5.

- (i) Find the ratio of the curved surface area of A: curved surface area of B.
- (ii) Find the ratio of volume of *A* : volume of whole cone
- (iii) Given that the volume of A is 122 cm^3 , calculate the volume of B.

6 The figure below shows a solid formed by joining a hemisphere of radius r cm to one end of a cylinder of height r cm. The other end of the cylinder is attached to a cone of height h cm.

- (a) Find, in terms of π and r, the total volume of the hemisphere and the cylinder.
- (b) The volume of the cone is half the volume of the entire solid. Show that h = 5r.
- (c) Given that the volume of hemisphere is 54π cm³, find the volume of the solid.

Circular Measure

The shape below is known as a sector, which is cutting a fraction out from a circle. Using fractions, we have the following formulas.

Arc length $= \frac{\theta}{360^{\circ}} \times 2\pi r$ Area of sector $= \frac{\theta}{360^{\circ}} \times \pi r^2$

Where $2\pi r$ and πr^2 gives the circumference of the circle and area of circle respectively.

Using radians to measure the angle instead of degrees, since $180^{\circ} = \pi$ radians, we have,

Arc length
$$= \frac{\theta}{2\pi} \times 2\pi r = r\theta$$

Area of sector $= \frac{\theta}{2\pi} \times \pi r^2 = \frac{1}{2}r^2\theta$

These formulas allow us to calculate the arc length and area of a sector much more easily. Remember however, that the angle has to be measured in radians instead of degrees! 7 *A*, *B* and *C* are points on the circle centre *O* and AB = BC. *P* is the midpoint of chord *AB* and *Q* is the midpoint of chord *BC*.

- (a) Prove that triangle *OAP* is congruent to triangle *OCQ*.
- (b) Given trat the radius of the circle is 6 cm and the obtuse angle $AOC = \frac{7\pi}{9}$, calculate the shaded area of the figure.

8 The diagram above shows a semicircle of diameter AB. It is given that AB = 8 cm and C is a point on the semicircle such that $\angle CAB = 24^{\circ}$.

Find,

- (a) the area of $\triangle ABC$,
- (b) the perimeter of the shaded region subtended by the arc AC.

⁹ The diagram below, not drawn to scale, shows a sector *OAB* with $\angle AOB = \frac{\pi}{3}$ and radius 8 cm.

Given that point C lies on the line BO, find the possible value of the length of CO

- (a) if the area of the shaded region is equal to the area of the non-shaded region,
- (b) if the perimeter of the shaded region is equal to the perimeter of the nonshaded region.